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A B S T R A C T

In-situ process monitoring has seen significant interest in additive manufacturing to address qualification and 
certification goals. This is especially prevalent in metal powder bed fusion processes such as electron beam 
powder bed fusion (PBF-EB), with layer-wise infrared imaging being commonly used to detect defects. This work 
compares two different segmentation methods (static thresholding and statistical thresholding) used for 
detecting porosity from in-situ infrared imaging data for PBF-EB. Samples were manufactured at a variety of 
focus offset values to induce porosity. Then, the segmented infrared images were compared to ex-situ X-ray 
computed tomography scans, which served as a ground-truth reference for objective evaluation. Through this 
analysis framework, the influential parameters, static threshold and N-value (number of standard deviations 
above the mean pixel value), respectively, for both image segmentation methods were analyzed and compared 
for their effects on porosity detection. With optimal parameter settings, the two methods had similar porosity 
detection performance, but the statistical method performed better under a larger variety of parameter settings.

1. Background

Additive manufacturing (AM) has seen an increase in use in industry 
and research to create components with features such as complex ge
ometries, increased customizability, and weight optimization that 
cannot be accomplished via other manufacturing methods. However, 
guaranteeing component quality in AM processes can be difficult due to 
the process understanding of AM being less established than that of 
manufacturing methods like machining or casting. Therefore, many re
searchers have focused efforts on detecting and measuring factors 
related to part quality [1]. Without proper process control, powder bed 
fusion (PBF) parts are prone to defects, such as dross, high surface 
roughness, and porosity. Porosity primarily occurs in electron beam 
powder bed fusion (PBF-EB) when sections inside the solid component 
are not fused together with the rest of the part, leading to voids in the 
component [2]. Previous researchers have shown porosity can impact 
mechanical performance by producing premature fatigue failure [3] and 
decreased ultimate tensile strength [4]. Because of this, detecting, pre
dicting, and reducing the likelihood of these defects appearing in AM 

components has become a major focus of current metal AM research.
While standard evaluation methods for determining material prop

erties (such as tensile and hardness testing) have been used to evaluate 
the performance of AM parts, non-destructive evaluation (NDE) 
methods offer the ability to use parts after evaluation. One NDE method 
that has seen high use in AM is X-ray computed tomography (XCT) [5]. 
While XCT and other ex-situ NDE methods have become more capable 
and widely used, they can be time and cost intensive. This has led to an 
increased interest in utilizing in-situ evaluation methods that qualify a 
component in-process rather than adding subsequent inspection pro
cesses [6]. These methods incorporate a variety of sensors to detect 
anomalies in the build process and predict the presence of defects. 
Sensors have been used to detect anomalies in machine functionality, 
such as gas flow [7] or recoater blade vibrations [8], and in the manu
factured parts, such as porosity [9] or high surface roughness [10]. Both 
visible-light spectrum [11] and infrared (IR) cameras [12] have been 
used to detect anomalies in PBF processes and have been established to 
effectively detect certain defects. IR cameras have been especially 
effective at detecting porosity in electron beam powder bed fusion 
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because pores have greater thermal emissivity than the solid material 
and therefore appear as bright spots in IR images [13].

Many researchers have used IR imaging to measure the effect of 
interlayer cooling time on porosity generation [14], while others have 
used it to detect the presence [15] and development of [16] porosity 
defects in both PBF-EB and laser powder bed fusion (PBF-LB) processes. 
To detect these pores, a variety of image processing techniques have 
been used to segment pores from the rest of the image. A commonly used 
method is image binarization with a static threshold [17]. This method 
is the easiest to implement, as the threshold is set to a single pre- 
specified pixel value, usually set by the user, for all images. Any pixel 
values above this threshold will be designated as part of a pore or air, 
while any pixel value below will not. Due to this ease of use, this method 
has also been used in a few different contexts, including to determine 
areas with temperatures above a desired value during a build process 
[18] and to determine regions of interest (ROI) for further analysis [19]. 
Another method is a statistical thresholding method. This method cal
culates the threshold for each image using the mean and standard de
viation (σ) of the image pixel values. These statistical methods work like 
the Otsu threshold selection method [20], which uses statistical evalu
ation of gray values to find distinguished peaks in gray value clusters to 
denote classes and find a threshold value between them, as both are 
more unsupervised compared to the manual methods and are therefore 
less subjective. This method has been previously used with the threshold 
set to one σ above the mean pixel value to evaluate the effectiveness of 
using IR imaging for defect detection in PBF processes [21].

Finally, many researchers have developed machine learning (ML) 
methods to detect pores in IR images. However, these methods have also 
been typically used to detect a variety of other part defects (such as high 
surface roughness [22]) or have tried to predict the likely cause of the 
pores (such as lack of fusion or keyholing [23]). Some ML methods have 
tended to use more feature-based methods (such as identifying certain 
shapes) in addition to the more basic segmentation methods, such as 
thresholding or gradient detection [24]. Additionally, it should be noted 
that ML methods require significant computing power and training time.

Little research has been done to optimize and study the performance 
of the aforementioned segmentation approaches for porosity detection. 
Static thresholds were typically used for analyzing individual layers, as 
the threshold is easy to adjust, but the optimal threshold value was 
usually determined qualitatively and adjusted manually [14,18,19]. 
Statistical methods have only set their threshold to 1 σ above the mean 
pixel value and have not looked at how changing this parameter can 
affect detection accuracy [21]. Additionally, little research has been 
conducted comparing the effectiveness of these methods using ex-situ 
evaluation as ground truth [25]. Such evaluations have still only been 
qualitative in nature or used single-layer comparisons to evaluate the 
defect detection accuracy for whole components.

Some researchers have used XCT scanning to evaluate the validity of 
IR in situ imaging, but this has primarily been used qualitatively without 
objective, quantifiable metrics. XCT has been used to verify the presence 
of pores and other defects detected via IR images [26], as well as to 
observe how areas of increased thermal emissivity have led to the for
mation of an increased number of defects [27]. However, while this has 
been thoroughly and quantitatively researched for PBF-LB, these in
stances have been relatively qualitative and subjective in their evalua
tion for PBF-EB, basing their performance entirely on the operator's 
perspective (i.e. manual alignment, simple detection). There have been 
very few instances of XCT being used to objectively, quantitatively 
evaluate in-situ layer-wise IR imaging (i.e. measuring the size of pores, 
numerical comparison). One such instance involved overlaying point 
clouds of pores found in IR images over a point cloud of pores derived 
via XCT scans. This was then used to train a prediction model to detect 
lack of fusion porosity [28]. In other work, X-rays have been used in-situ 
to the manufacturing process instead of ex-situ to evaluate in-situ IR 
imaging to train an ML model for real-time porosity detection [29]. 
Nevertheless, these comparisons have either only been done 

qualitatively or using too coarse of a resolution to detect smaller defects. 
Additionally, while in situ detection can be helpful for real-time detec
tion, the evolution of porosity from manufacturing to finished product is 
not yet fully understood in PBF-EB. Finally, while there has been ample 
work with PBF-LB, the pore formation is significantly different between 
the two processes. In PBF-LB, pores are typically formed from valleys 
collapsing and trapping gas in the solid part [30]. Meanwhile in PBF-EB, 
pores are typically formed due to successive layers or improper heat 
dissipation [16]. Therefore, in IR images, the PBF-LB pores appear more 
as darker spots while the PBF-EB pores appear more as brighter spots.

This work will address how two low-level segmentation methods are 
affected by their primary parameter. The first method used a static 
threshold method for all images, where the threshold was set to various 
percentages of the maximum bit value. The second method used a sta
tistical threshold for each image based on the mean and standard de
viation of the grayscale values. Both methods were evaluated based on 
their accuracy of detecting pixels of pores and non-pores. Additionally, 
observations on how some external factors, such as porosity density and 
overall image brightness, affect detection ability were made. XCT scans 
with a sufficiently small voxel size were used as a ground-truth com
parison to objectively evaluate the effectiveness of each method via 
precision and accuracy scores, and a rigorous, feature-based registration 
method is used to align the IR and XCT image data sets. The insights 
presented give future researchers greater understanding of the effec
tiveness of these methods when applied to in-situ IR data.

2. Methods

2.1. Sample design

The specimens used for this experiment were manufactured out of Ti- 
6Al-4 V powder on an ARCAM Spectra L PBF-EB machine. In total, 27 
samples were manufactured with a layer height of 70 μm. While this 
height may vary due to various spreading inconsistencies, this is a 
common assumption in general PBF usage and literature. Future work 
can explore the effect these variations have on layer-wise defect detec
tion methods. Porosity was created at varying levels by adjusting the 
focus offset (FO), as adjusting FO has a strong relationship to porosity 
formation [16]. Of these samples, 9 samples had an FO of 55 mA 
(labeled A1-A9), 9 had an FO of 65 mA (labeled B1-B9), and 9 had an FO 
of 75 mA (C1-C9). They were placed in the build volume in sets of 9 
containing three of each FO (Fig. 1). The A samples were beamed first, 
followed by B and C. All samples were designed as cylinders with a flat 
vertical face (see Fig. 2) to facilitate registering the in-situ IR images to 
the ex-situ XCT scans. Registration refers to aligning special data from 
different sources for direct comparison (in this case, IR imaging and XCT 
scans). This process is further explained in Section 2.3.

2.2. IR image processing and segmentation methods

The in-situ images were taken at the end of each layer via the original 
equipment manufacturer (OEM) supplied IR camera (Prosilica GT). This 
camera used a prime lens with a focal length of 350 mm, an infrared- 
radiation sensor with a bit depth of 8 bits, a gamma value set to 1, an 
image size of 5120 × 5120 pixels, and a resolved pixel size of approxi
mately 70 μm within the field of view. The IR images were distortion- 
corrected in MATLAB 2022b using the program's pinhole camera 
model for distortion correction. Once corrected, each image was crop
ped to a region of approximately 137 × 137 pixels (9.59 × 9.59 mm) to 
create a single image stack for each sample. Then, the images were 
filtered using an anisotropic diffusion filter, which smooths images 
while maintaining gradients to remove noisy pixels. Finally, each seg
mentation method was performed on each image stack to generate a 
stack of binary-segmented images. For the static cutoff, the images had 
their gray values unitized to be between 0 and 1; then, the images were 
binarized using MATLAB imbinarize function, with thresholds (T) 
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varying from 0.5 to 0.95. For the statistical cutoff, the mean (μ) and 
standard deviation (σ) of the pixel grayscale values for each image were 
calculated and used to determine the threshold being μ + N * σ (with N 
ranging from 0 to 6), then they were binarized using the MATLAB 
imbinarize function. These ranges are listed in Table 1. Once the 
segmented image stacks were generated, they were cropped to be within 
the contours of each individual part. Finally, the images were resampled 
to match the smaller pixel size from the two-dimensional slices of the 
XCT reconstruction to allow for direct pixel-to-pixel comparisons be
tween the XCT and IR data.

2.3. XCT volume processing

Once manufactured, the samples were scanned in a Zeiss Metrotom 
800 XCT machine. To ensure semi-repeatable sample placement within 
the CT volume, samples were placed in a nylon (low X-ray attenuation 
material) fixture during scanning. All samples were scanned using a 
voltage of 130 kV, current of 61 μA, a 0.25 mm copper prefilter, 1600 
projections. Scans were reconstructed using a Feldkamp-David-Kress 
reconstruction algorithm and Shepp-Logan digital filter [31]. The XCT 
scan volumes were registered using MATLAB code developed by the 
research team to register the scan volume to the build coordinate sys
tem. First, volumes were converted to surfaces by thresholding the 
volume grayscale values via an ISO-50 threshold between the material 
and air grayscale value peaks. Registration was accomplished using 
datum features, such as points, axes, planes, etc., derived from surface 
data geometries [32] and can be used to align different surfaces for 
direct comparison (in this case, the surfaces created by IR and XCT data). 
The primary datum feature was the cylindrical section, the secondary 
datum was the vertical face, and the tertiary datum feature was the top 
face. For each of these datum features, surface points were sampled 
within a region of interest (ROI) that captured most of the feature, then 
basic geometric shapes were associated with the features via orthogonal 
least squares minimization to determine the datums. A cylinder was fit 
to the cylindrical sections, while planes were fit to the flat faces. A 
rotation matrix was determined that would align the axis of the primary 
datum, the cylinder, with the +Z direction. After applying this rotation, 
the normal vector of the secondary datum, the vertical face, was pro
jected onto to the X-Y. A second rotation about the Z axis was then 
determined such that the normal vector would be aligned with the +X 
direction. Finally, a translation was applied to the twice rotated data 

Fig. 1. Build layout.

Fig. 2. Sample design.

Table 1 
Segmentation methods, parameters, and ranges.

Method Parameter Tested values/types

Static
Threshold (Percentage of Maximum Bit 
Depth, T)

0.5–0.95 (0.05 step 
size)

Statistical
Number of Standard Deviations Above Mean 
(N)

0.0 to 6.0 (0.5 step 
size)
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that would make the axis of the primary datum coincident with (X, Y) =
(0,0) and the centroid of the tertiary datum, the top face, coincident with 
Z = 0. The two rotation matrices were composited and along with the 
translation matrix, the overall transformation was applied to the vol
umes via MATLAB imwarp3 function. Then, the registered volumes were 
sliced into image stacks along the Z-axis in MATLAB at each voxel.

To detect and segment porosity, these image stacks of the XCT data 
were processed using Weka Segmentation 3D, a machine learning image 
segmentation plug-in tool in ImageJ [33]. This program allows the user 
to directly label voxels in the input images to classify voxels for each 
class (in this case, air, part fixture, solid material, and pore classes, as 
shown in Fig. 3). A Gaussian blurring convolution was used to reduce 
noise influence and was calculated with window sizes of 1, 2, 4, and 8 
voxel width. These convolutions were computed at each level as a series 
of feature volumes (difference of Gaussians, derivatives, structure, 
Laplacian, Hessian, mean, median, and variance) to expand the data set. 
The model was trained using a selection of images from each sample's 
image stack and used the integrated FastRandomForest algorithm, which 
is a re-implementation of a Random Forest classifier with speed and 
memory improvements. After each classification run, model predictions 
were manually examined and evaluated for accuracy. Errors were 
addressed by additional manual relabeling of voxels before retraining, 
and this process was repeated until satisfactory predictions, according to 
the operator, were produced by the model [34]. Finally, the XCT images 
were cropped to be within the part boundaries to eliminate edge seg
mentation errors.

2.4. XCT to IR comparison analysis

Once all the image stacks were processed, the segmented IR image 
stacks for each sample were compared directly to their XCT counterpart 
on a pixel-by-pixel level via a marker pixel placed in the center of the 

XCT and IR volumes for initial registration. This comparison was per
formed by image subtraction, where the pixel values of one image stack 
are subtracted from the value of the same pixel in the other. Based on the 
resulting image stack, each pixel was given a classification accuracy 
value represented by a new red-green-blue (RGB) color value. These 
color values were based on the following detection criteria: true positive 
(TP, green, IR detected pore where XCT detected pore), true negative 
(TN, gray, IR did not detect pore where XCT did not detect pore), false 
positive (FP, blue, IR detected pore where XCT did not detect pore), and 
false negative (FN, red, IR did not detect pore where XCT did detect 
pore), as shown in Fig. 8 and Fig. 12 in Sections 3.2 and 3.3, respec
tively. The black pixels represent pixels outside the sample boundary.

3. Results

3.1. Infrared and X-Ray computed tomography imaging results

Since both segmentation methods depend directly on the grayscale 
values of the IR images, histograms were used alongside the raw IR 
images to gain preliminary understanding of the images. In Fig. 4, three 
examples of raw IR images are shown alongside their image histograms. 
These images were selected from specimens that represent the three 
different FO values, sample A5 in Fig. 4a) with FO = 55 mA, Sample B2 
in Fig. 4b) with FO = 65 mA, and sample C5 in Fig. 4c) with FO = 75 
mA). As expected, the IR data shows an increase in FO resulted in an 
increase in porosity. The bright dot in the center of each image is the 
reference pixel, which was used to properly register and align the IR and 
XCT images. Additionally, another aspect to note is that the overall 
brightness varied between the samples due to the thermal cycling 
inherent to the additive process, which may have influenced the effec
tiveness of the segmentation methods. This can be seen via both the 
average pixel values and the distribution of gray values on the histo
grams. Brighter images were distributed on the higher end of the his
tograms and therefore had a higher average pixel value. Finally, the 
pores appeared to be the brightest parts of the image, which agrees with 
the previously discussed literature. The next brightest parts appear to be 
the contours, followed by the solid material and lastly the surrounding 
semi-sintered powder. This corresponds to the grayscale value peaks in 
the histograms, with surrounding semi-sintered being the leftmost peak, 
followed by the solid material being the second, and the contour and 
pore peak being last. However, these peaks vary in their magnitude and 
variation from the rest of the grayscale values, making simple peak 
detection (such as in the Otsu method) difficult. Since a Blackbox cali
bration was not performed, this analysis is a comparative study, not 
absolute.

As described in Section 2.3, XCT scanning was used as a ground-truth 
measurement to evaluate the effectiveness of each segmentation 
method. Cross sections of Samples A5, B2, and C5 are shown as examples 
of results of these scans in Fig. 5. The additional object in the image from 
the scans for Samples B2 and C5 is the fixture used for scanning. The 
changes in FO also resulted in varying levels of detectable porosity, 
which allowed the XCT scans to be used as ground-truth reference for 
the IR images. As expected from the literature [16] and confirmed in 
both the IR and XCT datasets, the increase in FO resulted in an increase 
in porosity, allowing for analysis at different porosity levels.

Before performing the objective comparison, the rescaled IR images 
and registered XCT images were qualitatively compared to verify the 
success of the IR segmentation, XCT segmentation, and registration 
processes. Fig. 6 shows an example of this comparison for a single cross 
section of Sample B2. It is important to note that the pores may have had 
a slightly different appearance in the IR and XCT image stacks. In the IR 
images, the pores were larger and more bulbous, due to heat dissipation 
and coarser image resolution. Meanwhile in the CT images, the pores 
were more irregular in shape due to the finer resolution. However, while 
appearing different in shape, the pores in both image sets were still in 
similar locations. Nonetheless, evaluating the performance of the 

Fig. 3. Weka classification example with a) raw XCT image, b) classified XCT 
image, c) Weka classified image overlaying raw XCT image, and d) close-up 
view of classified pore overlaying raw XCT image.
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Fig. 4. Distortion-Corrected IR images and histograms for a) sample A5 (FO = 55 mA, low porosity, average gray value = 106), b) sample B2 (FO = 65 mA, medium 
porosity, average gray value = 156), and c) sample C5 (FO = 75 mA, high porosity, average gray value = 118).

Fig. 5. Raw XCT images for a) sample A5 (low porosity), b) sample B2 (medium porosity), and c) sample C5 (high porosity). d) Detail image of a pore from 
sample C5.

Fig. 6. Side-by-side comparison of rescaled IR image and registered CT image for sample B2.
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analysis methods needed to account for this difference. This is more 
thoroughly discussed in the Discussion section.

3.2. Static thresholding segmentation

Fig. 7 shows the results of performing the static thresholding seg
mentation analysis on a single cross section of Samples A5, B2, and C5. 
In these resulting images, pixels classified as a pore are white, while 
pixels classified as not a pore are black. The pixel in the center of each 
image is the reference pixel, which was used to align the XCT and IR 
image stacks. As can be seen, the threshold value influenced the results 
of the segmentation. When the threshold was set high enough, the 
resulting segmentation classified everything as not a pore (called 
blacking-out, seen in T = 0.80 of Fig. 7a). When the threshold was set 
low enough, the resulting segmentation classified everything as a pore 
(called whiting-out, seen in T = 0.50 of Fig. 7b). Since these blacking-out 
and whiting-out conditions typically happened below T = 0.5 and above 
T = 0.85, respectively, results outside the T = 0.5 to 0.85 range were not 
analyzed further.

To perform the evaluation of the IR images using the CT images, each 
pair of images from each stack were overlayed, and each pixel was 
colored based on which of the 4 evaluation conditions (described in 
Section 2.4) applied. Fig. 8 shows an example of these colorized results 
comparing static IR and XCT images for a single cross section of Sample 
B7. As can be seen, the lowest threshold values were more likely to 
oversize the pores, which led to increased FP and decreased TN values 
and decreased performance. However, the opposite can be seen in 
comparison images with the highest threshold values. These high- 
threshold images were more likely to undersize (or not even detect) 
pores, which lead to increased FN and decreased TP values and 
decreased performance.

To get an understanding of how each evaluation condition, i.e., TP, 
FP, TN, FN, varied with the parameter value, the average area of all 
samples for each evaluation condition was plotted for each parameter 
value with bounds of 1 standard deviation above and below (Fig. 9). This 
was determined by counting the pixels from the colorized comparison 
images for each condition, then multiplying that count by the area of 
each pixel (12 μm × 12 μm). One observation to note is the TN area was 
at least an order of magnitude higher than the TP. This was likely due to 

how most of the part in the image is material, meaning there was 
significantly more area associated with non-pore material than pore. 
This resulted in significantly imbalanced classes. Therefore, the G-Mean 
metric, which uses TP and TN proportions for calculations, was chosen 
to measure classification performance over other metrics (such as clas
sification accuracy). Otherwise, the quantity of TN pixels would skew 
the results if other performance metrics were used.

For the static segmentation method, the threshold value had a sig
nificant impact on the area of detected pores for each condition. Both TP 
and FP decreased significantly over the range of T = 0.5 to T = 0.85, 
with both conditions reaching 0 mm2 by T = 0.85 after starting at 0.45 
mm2 and 10 mm2, respectively. Meanwhile, the TN and FN values both 
increased over the range, with TN going from 19 mm2 to 30 mm2 and the 
FN going from 0.05 mm2 to 0.5 mm2. Additionally, the standard devi
ation bounds for the TP, TN, and TP all converged to the average values 
by T = 0.8, whereas the standard deviation bounds for the FN did the 
opposite and increased to the same magnitude as the average. It should 
be noted these metrics are averages over all images of all samples, 
averaging-out environmental aspects (such as brightness). The standard 
deviations partially incorporated the effects of these environmental as
pects, as these aspects result in higher variance and therefore larger 
standard deviations, but there were other factors that also resulted in 
higher variance. However, these metrics were still good summary met
rics alongside the qualitative results, such as those in Fig. 7 and Fig. 8, 
since the qualitative results provided explanations for the higher vari
ances in the metric values.

To quantitatively evaluate how threshold (T) affected porosity 
detection, a G-Mean metric was calculated at each T value and plotted in 
Fig. 10. G-Mean is a metric calculated using the Sensitivity and Speci
ficity, shown in Eqs. (1)–(3), which are proportions of positive and 
negative classes. This made the G-Mean metric ideal for this case 
because of the large imbalance between the negative and positive clas
ses. For this calculation, the number of pixels for each of the four 
evaluation conditions (true positive, true negative, false positive, false 
negative) was counted for each image slice of each sample, and the totals 
for each parameter were summed for the plot. These scores range from 
0 to 1, with 1 meaning perfect detection. For the static cutoff, the G- 
Mean increased from T = 0.5 to T = 0.55, maximizing at 0.79. After T =
0.55, the G-Mean steadily decreased as T continued to increase, reaching 

Fig. 7. Static segmentation results for a) layer 118 (height = 8.26 mm) of sample A5 (FO = 55 mA, low porosity), b) layer 100 (height = 7.0 mm) of sample B2 (FO =
65 mA, medium porosity), and c) layer 40 (height = 2.8 mm) of sample C5 (FO = 75 mA, high porosity) compared to their raw IR images.
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0.07 at T = 0.85. This matched what was qualitatively observed in Fig. 7
and Fig. 8, as the increase in T from 0.5 removed any whiting-out over- 
classifying as well as some pore oversizing. After 0.55, the pores began 
to be undersized, eventually leading to blacking-out under-classifying. 
This also quantitatively justified the previous decision to not analyze 
images with T greater than 0.85, as the trend showed those G-Mean 

values would have been close to 0. 

Sensitivity =
True Positive Pixels

True Positive Pixels + False Negative Pixels
(1) 

Specificity =
True Negative Pixels

True Negative Pixels + False Positive Pixels
(2) 

Fig. 8. Colorized comparison of static segmentations applied at height = 10.92 mm on sample C7 with various threshold values.

Fig. 9. Average evaluation condition count (solid) +/− 1 standard deviation (dashed) for static segmentation methods.
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G − Mean =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sensitivity × Specificity

√
(3) 

3.3. Statistical thresholding segmentation

Fig. 11 shows the results of performing the statistical segmentation 
on Samples A5, B2, and C5. Similar to the static thresholding segmen
tation method, the tested parameter (in this case, N) influenced the 
detection of porosity. If the value of N was too low (such as with N = 0 in 
Fig. 11a), the segmentation misidentified some material pixels in the 
image as pore pixels, and if the value of N was too high (such as with N 
= 6 in Fig. 11c), the segmentation misidentified pore pixels in the image 
as material pixels. While there were noticeable differences between the 
different values of N, the differences were less obvious compared to the 
other methods. Compared to the static method, the thresholds were 
closer together for statistical methods than static and located between 

the material and pore peaks, shifting with the location and distribution 
of the gray values. Therefore, determining the optimal threshold quali
tatively is more difficult, and quantitative evaluation is required.

As with the static segmentation method, a set of colorized compar
ison images were generated comparing statistical IR and XCT image 
stacks (Fig. 12). As can be seen, when the N value was set closer to 0, the 
images were overclassified which increased the FP and decreased the TN 
values. This was like the static method comparison images (Fig. 8). 
However, unlike the static method, within the N value range, the sta
tistical method comparison images never reach a point of full under- 
classification due to the smaller change in threshold value per change 
in parameter value. Additionally, while there was significant difference 
between the images with N = 0 and N = 1.5, the difference between 
images became less significant as N increased (such as between N = 4.5 
and N = 6).

To see how the N-value affected the average area (+/− 1 standard 
deviation) for each evaluation condition, these conditions were plotted 
in Fig. 13. As with the static segmentation, the true negative area was 
significantly higher than any of the other conditions. However, unlike 
the static methods, the true positive area always remained above the 
false positive count. Additionally, the TP and FN values decreased and 
increased, respectively, linearly but shallowly. The TP values decreased 
from 0.4 to 0.26 mm2, while the FN values increased from 0.1 to 0.24 
mm2 in the range of N = 0 to N = 6. Meanwhile, the TN and TP values 
had very different behavior. The TN increased logarithmically, starting 
at 15 mm2 and leveling out at 27 mm2 by N = 2, while the FP decreased 
logarithmically, starting at 15 mm2 and leveling out at 3 mm2 by N = 2. 
Finally, the standard deviation bounds were mostly constant with 
respect to the average throughout the full range.

As was done with the static segmentation, G-Mean values were 
calculated for the statistical segmentation at each N value (plotted in 
Fig. 14). Results were plotted on the same axes as Fig. 10 for direct 
comparison. The relationship between N and G-Mean values were 
relatively concave down, though it was not symmetric. From N = 0 to N 
= 2, the G-Mean increased from 0.6 to a maximum of 0.78 before it 
decreased to 0.7 at N = 6. While somewhat parabolic, the relationship is 
not symmetric, as the increase from N = 0 to N = 2 is significantly larger 
and more parabolic than the decrease from N = 2 to N = 6, which is also 

Fig. 10. G-Mean for static segmentation method.

Fig. 11. Statistical segmentation results for a) layer 118 (height = 8.26 mm) of sample A5 (FO = 55 mA), b) layer 100 (height = 7.0 mm) of sample B2 (FO = 65 mA), 
and c) layer 40 (height = 2.8 mm) of sample C5 (FO = 75 mA) compared to their raw IR images.

B. Johnstone et al.                                                                                                                                                                                                                              Journal of Manufacturing Processes 149 (2025) 1066–1077 

1073 



significantly more linear.

4. Discussion

When evaluating these methods, one aspect that must be addressed 

first is the difference between the appearance of pores in the IR images 
and the XCT images. This can be seen in the side-by-side comparison in 
Fig. 6. As previously stated, in IR images, pores appear as bright spots 
because the unmelted powder in the pore areas absorbed less heat en
ergy than the solid regions, therefore emitting more heat radiation. 

Fig. 12. Colorized comparison of statistical segmentations applied at height = 10.92 mm on sample B7 with various N-values.

Fig. 13. Average evaluation condition area (mm2) (solid) +/− 1 standard deviation (dashed) for statistical segmentation methods.
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Since heat spreads from areas of high temperature to areas of low 
temperature, the heat energy from the pore-forming areas conducts into 
neighboring areas without pores. This causes the surrounding non-pore 
areas to irradiate more heat and the pores to appear larger in the IR 
images. Therefore, the pores may have changed apparent size and shape 
by the time they were XCT scanned. This has been documented in 
literature [10] [35] and is why many detection algorithms focus on 
detecting the presence and spatial distribution of porosity instead of the 
exact size [19]. This is likely a factor as to why the G-Mean magnitudes 
were lower than other work, as these methods were evaluated on a pixel- 
by-pixel level instead of a pore-by-pore level. This phenomenon has yet 
to be fully researched and detailed quantitatively for PBF-EB. However, 
the magnitudes are still representative of performance and the trends 
from the G-Mean can still be utilized to see the influence each method's 
parameter had on its performance.

For the static threshold segmentation method, the threshold value 
appeared to have a significant effect on detection accuracy (Fig. 8). 
When the threshold value was too low (as seen when set to 0.50), the 
cutoff was below the gray values of the fused part. This led to the 
segmented image being whited-out and over-classified, resulting in a 
significantly higher FP rate. When the threshold value was too high (as 
seen when set to 0.80 or higher), the segmented image was blacked-out 
and under-classified. Therefore, some pores were either not detected or 
were represented as significantly smaller than they were, resulting in a 
significantly higher FN rate. When finding an optimal threshold, this 
method was very sensitive to the threshold parameter, meaning small 
changes in the threshold value led to large changes in porosity repre
sentation. Based on the G-Mean, a threshold of 0.55 appeared to perform 
the best for these conditions. While the exact value may vary slightly 
based on process conditions, these results show that optimizing this 
threshold requires a balance of increasing the threshold to minimize FP 
and decreasing the threshold to minimize FN.

Additionally, this method appeared to be very sensitive to external 
factors. Overall image brightness significantly affected the optimal 
threshold value for each image, as the optimal threshold for one layer 
sometimes resulted in an entirely blacked-out or white-out result in 
others. Therefore, this method may be best for analyzing a small number 
of layers with minimal change in conditions external to the analysis 
itself.

When observing the statistically-thresholded images, such as those in 
Fig. 11, increasing the N value significantly changed the resulting 
segmented images. This was most prevalent between lower values of N, 
such as between N = 0.0 and N = 1.5. However, this change was less 

prevalent as N increases, as can be seen between N = 4.5 and N = 6.0. 
Additionally, while contours were filtered out of the analysis in this 
work, it can be noted that the contours naturally filtered out consistently 
between N = 1.5 and N = 3.0, unaffected by porosity levels. This sug
gests a potential relationship in the differences in detected emissivity 
between contours and pores. This relationship can be researched further 
in future studies, but this was outside the scope of this work.

When analyzing the colorized comparison images, the N value 
appeared to influence detection accuracy. With smaller N values, spe
cifically less than two, the thresholded images oversized the pores, with 
increasing N leading to less oversizing. However, after an N value of two, 
the images began to underestimate the size of the pores. The quantita
tive results from the G-Mean plotted in Fig. 14 match these qualitative 
findings. The detection accuracy increased from N = 0 to N = 2 as the FP 
rate decreased from significantly oversizing the pores. After N = 2, the 
detected pores began to undersize and lead to a higher FN rate. How
ever, since the number of TN pixels was significantly larger than the 
number of TP pixels, the increased FN rate had less of an impact than the 
increased FP on the porosity detection, which is seen by the smaller 
decrease from N = 2 to N = 6 compared to N = 0 to N = 2. This has 
expanded the insights of previous work using statistical methods [10], 
which just used N = 1 for porosity detection. As these results show, 
adjusting N can result in greater porosity detection to best optimize for 
the given set of process conditions. Based on the results, N should be 
adjusted to be equal to 2 for optimal results detecting porosity.

The statistical thresholding did seem to struggle slightly with dim
mer images (such as the ones seen in Sample A5). Based on the build 
layout, these images were likely dimmer due to the corresponding 
samples having been beamed before others. Therefore, the samples in 
these images had more time to dissipate heat before being imaged (as 
each image was taken after the layer had finished being beamed). This 
means the intensity of the pixels in the contours likely played a greater 
role in determining the average and σ pixel intensity values. In these 
methods, the contour pixels were filtered out after segmentation and 
alignment, and therefore they did not have a direct impact on the 
classification accuracy. However, as stated, the contours may have still 
had an impact on the classification.

Additionally, this method is more computationally expensive than a 
static threshold because a new threshold is calculated for each image 
instead of using the same threshold for all. The intensity value of each 
pixel in the image is considered when determining the μ and σ. While 
this was not a problem in this work (as the larger images were cropped to 
only contain a single sample), this could prove problematic with larger 
image sizes.

To compare the two methods directly, the parameters for each 
method were normalized using the initial parameter value and relevant 
ranges for each parameter using Eq. (4). Since the static thresholds were 
based on the range of possible bit values, the total range was 0 to 1. 
However, since the pores were brighter in the images, only the top half 
of the range was used, making the static parameter range 0.5. For the 
statistical method, the standard deviations are based on the distribution 
of pixel values on each image. Unfortunately, since the distribution 
varied between images and a standard deviation assumes a unimodal, 
normal distribution, the number of standard deviations between the 
average and maximum pixel values varied significantly between images. 
The average difference was 10, so the total range of N was set to − 10 to 
10 and therefore the parameter range was 0–10, with an initial N value 
of 0. 

Normalized Parameter =
Parameter Value − Initial Parameter Value

Parameter Range
(4) 

The G-Mean values for each method with the normalized parameters 
were plotted together in Fig. 15. Out of the two methods, the static 
segmentation method appears to be more sensitive to its adjustable 
parameter, while the statistical segmentation appears to be less sensi
tive. While the statistical segmentation varied from changing the N 

Fig. 14. G-Mean of statistical segmentation method.
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parameter, the change from each adjustment resulted in a smaller 
change in threshold value and is less significant than the static seg
mentation. This can be quantitatively observed by the static segmenta
tion G-Mean values ranging from 0 to 0.80 across the parameter range, 
while the statistical stayed within the range of 0.6 to 0.8 throughout the 
entire parameter range. This matched the qualitative observations from 
Fig. 7 and Fig. 11, as the static segmentation results ranged from fully 
whited-out to fully blacked-out on most slices. While there were still 
instances of this happening with the statistical segmentation, the 
occurrence was significantly less, happening only on sporadic slices. 
This implies the statistical method is more robust and reliable than the 
static method, as the tighter window of possible results means that 
outside influences are less likely to affect the detection of porosity.

One reason for having a robust detection algorithm is that images can 
vary in overall brightness. These changes in brightness can occur for a 
variety of reasons, from porosity density to time since being beamed. 
Even within the image stacks of a single sample, some layers had images 
that were significantly brighter than others. Set thresholds, like the ones 
in the static method, do not take this into account, as they simply look at 
pixels above a certain cut-off value. Statistical methods can account for 
this, as each layer's image has its own threshold based on the intensity of 
the pixel values. Additionally, because of this, the statistical method is 
more adaptable to these external factors, making it easier to determine 
the highest-performing values for a variety of conditions.

Overall, both methods performed similarly at optimal parameter 
settings, with the static method's best performance at T = 0.55 and the 
statistical method's best performance at N = 2. This means the pore pixel 
values on the histogram were around 55 % of the bit depth regardless of 
different external factors (porosity density, overall brightness, etc.) for 
this set of build conditions. Therefore, it can be inferred that detecting 
porosity for a set of build conditions has an optimal static threshold that 
can be easily implemented. However, the statistical method performed 
better at a larger variety of parameter settings. This makes this method 
more robust and reliable under a variety of different N values, meaning 
the optimal parameter value is less critical for optimization. Based on 
these results, it can be inferred this method would be better for detecting 
porosity for an untested set of build conditions.

5. Conclusions

In this work, two different types of basic segmentation methods 
(static thresholding and statistical thresholding) were analyzed for their 
effectiveness in detecting and modeling porosity in in-situ IR images in 

PBF-EB processes. Both of these methods were analyzed and optimized 
individually, using XCT scans as ground-truth verification. Then, they 
were compared to each other for their accuracy. Some conclusions from 
the work include: 

• The static method produced the best results when the threshold was 
set between 55 % of the maximum pixel intensity value. With an 
optimal threshold value, porosity was most accurately detected and 
modeled. However, the tolerance on this value was small, as small 
changes in the threshold value resulted in a significant decrease in 
classification accuracy.

• The statistical method produced the best results when the imaging 
threshold was set to 2σ above the mean. This method showed the 
least amount of variance between results from both internal and 
external factors. Of the methods assessed, this method most accu
rately detected and modeled porosity, and the tolerance for optimal 
N was much larger than the parameters for the other methods.

• Overall brightness of the images, which can be due to a variety of 
factors such as porosity density or time between beaming and im
aging, played a significant role in detection accuracy and finding 
optimal parameters. However, while this influenced the results in 
both methods, the statistical method showed the most resilience and 
still performed best through a variety of brightness conditions.

Along with showing how each method performed with different 
parameter settings, this work also provided some insight into the dis
tribution of grayscale values in these infrared images. As previously 
discussed, this distribution was affected by a variety of factors. The next 
step would be to look at changing the distribution of grayscale values, 
such as through image filtering. The goal of this would be to give more 
distinguished classification peaks, pushing intermediate pixels towards 
one or the other. These may provide additional information on factors 
that affect grayscale distribution in these images and how to mitigate 
any detrimental effects they have on the accuracy of each method to 
detect porosity.

CRediT authorship contribution statement

Brian Johnstone: Writing – original draft, Visualization, Validation, 
Software, Methodology, Investigation, Formal analysis, Data curation, 
Conceptualization. Jaime Berez: Writing – review & editing, Software, 
Methodology, Formal analysis, Conceptualization. Caroline Massey: 
Writing – review & editing, Software, Methodology, Formal analysis, 
Conceptualization. Elliott Jost: Writing – review & editing, Software, 
Methodology, Formal analysis, Data curation, Conceptualization. 
Christopher Saldana: Writing – review & editing, Supervision, Re
sources, Project administration, Methodology, Conceptualization. 
Katherine Fu: Writing – review & editing, Supervision, Resources, 
Project administration, Conceptualization.

Funding

This work was funded by the United States Department of Energy, 
under the Enhanced Preparation for Intelligent Cybermanufacturing 
Systems grant (DE-EE-0008303), and by Eaton Aerospace.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Fig. 15. Normalized parameter plots of both static and statistical methods.

B. Johnstone et al.                                                                                                                                                                                                                              Journal of Manufacturing Processes 149 (2025) 1066–1077 

1076 



References

[1] Kim FH, Moylan SP. Literature review of metal additive manufacturing defects. 
NIST Adv Manuf Ser 2018:1–17 [Online]. Available: http://nvlpubs.nist.gov/nis 
tpubs/ams/NIST.AMS.100-16.pdf.

[2] Edwards P, O'Conner A, Ramulu M. Electron beam additive manufacturing of 
titanium components: properties and performance. J Manuf Sci Eng 2013;135(6): 
1–7. https://doi.org/10.1115/1.4025773.

[3] Bisht M, Ray N, Verbist F, Coeck S. Correlation of selective laser melting-melt pool 
events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed 
fusion. Addit Manuf 2018;22(May):302–6. https://doi.org/10.1016/j. 
addma.2018.05.004.

[4] du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties 
in metal additive manufacturing: a review focusing on X-ray tomography insights. 
Mater Des 2020;187:108385. https://doi.org/10.1016/j.matdes.2019.108385.

[5] Cunningham R, Narra SP, Montgomery C, Beuth J, Rollett AD. Synchrotron-based 
X-ray microtomography characterization of the effect of processing variables on 
porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. Jom 
2017;69(3):479–84. https://doi.org/10.1007/s11837-016-2234-1.

[6] McCann R, Obedidi M, Hughes C, McCarthy E, Egan D, Vijayaraghavan R, et al. In- 
situ sensing, process monitoring and machine control in laser powder bed fusion: a 
review. Addit Manuf 2021;45(November 2020). https://doi.org/10.1016/j. 
addma.2021.102058.

[7] Reijonen J, Revuelta A, Riipinen T, Ruusuvuori K, Puukko P. On the effect of 
shielding gas flow on porosity and melt pool geometry in laser powder bed fusion 
additive manufacturing. Addit Manuf 2020;32. https://doi.org/10.1016/j. 
addma.2019.101030.

[8] Craeghs T, Clijsters S, Kruth J. Online quality control of selective laser melting. 
Phys Rev E 2011:212–26 [Online]. Available: http://www.ainfo.inia.uy/digita 
l/bitstream/item/7130/1/LUZARDO-BUIATRIA-2017.pdf.

[9] Forien J-B, Calta NP, DePond PJ, Guss GM, Roehling TT, Matthews MJ. Detecting 
keyhole pore defects and monitoring process signatures during laser powder bed 
fusion: a correlation between in situ pyrometry and ex situ X-ray radiography. 
Addit Manuf 2020:101336. https://doi.org/10.1016/j.addma.2020.101336.

[10] Yang T, Liao W, Wei H, Zhang C, Chen X, Zhang K. Effect of processing parameters 
on overhanging surface roughness during laser powder bed fusion of AlSi10Mg. 
J Manuf Process 2021;61(June 2020):440–53. https://doi.org/10.1016/j. 
jmapro.2020.11.030.

[11] Layerwise Automated Visual Inspection in Laser Powder-Bed Additive 
Manufacturing. 19, 2015. doi:https://doi.org/10.1115/MSEC2015-9393.

[12] Moylan S, Whitenton E, Lane B, Slotwinski J. Infrared thermography for laser- 
based powder bed fusion additive manufacturing processes. In: 40TH ANNUAL 
REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: 
Incorporating the 10th International Conference on Barkhausen Noise and 
Micromagnetic Testing; Oct. 2014. p. 1191–6. https://doi.org/10.1063/ 
1.4864956.

[13] Krauss H, Zeugner T, Zaeh MF. Layerwise monitoring of the selective laser melting 
process by thermography. Phys Procedia Sep. 2014;56:64–71. https://doi.org/ 
10.1016/j.phpro.2014.08.097.

[14] Gong H, Rafi K, Karthik NV, Starr T, Stucker B. “Defect morphology in Ti-6Al-4V 
parts fabricated by Selective Laser Melting and Electron Beam Melting,” 24th Int. 
SFF Symp. - An Addit. Manuf. Conf. SFF 2013, no. July 2015. 2013. p. 440–53. 
https://doi.org/10.26153/tsw/15566.

[15] Williams RJ, Pigline A, Ronneberg T, Jones C, Pham M, Davies C, et al. In situ 
thermography for laser powder bed fusion: effects of layer temperature on porosity, 
microstructure and mechanical properties. Addit Manuf 2019;30(October): 
100880. https://doi.org/10.1016/j.addma.2019.100880.

[16] Cordero ZC, Dinwiddie RB, Immel D, Dehoff RR. Nucleation and growth of 
chimney pores during electron-beam additive manufacturing. J Mater Sci 2017;52 
(6):3429–35. https://doi.org/10.1007/s10853-016-0631-z.

[17] Russ JC, Neal FB. The Image Processing Handbook. 2017.
[18] Rodriguez E, Mireles J, Terrazas CA, Espalin D, Perez MA, Wicker RB. 

Approximation of absolute surface temperature measurements of powder bed 
fusion additive manufacturing technology using in situ infrared thermography. 
Addit Manuf 2015;5:31–9. https://doi.org/10.1016/j.addma.2014.12.001.

[19] Mahmoudi M, Ezzat AA, Elwany A. Layerwise anomaly detection in laser powder- 
bed fusion metal additive manufacturing 2019;141(March):1–13. https://doi.org/ 
10.1115/1.4042108.

[20] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst 
Man Cybern 1979;C(1):62–6.

[21] Lough CS, Wang X, Smith C, Landers R, Bristow D, Drallmeier J, et al. Correlation 
of SWIR imaging with LPBF 304L stainless steel part properties. Addit Manuf 2020; 
35(May):101359. https://doi.org/10.1016/j.addma.2020.101359.

[22] Bartlett JL, Heim FM, Murty YV, Li X. In situ defect detection in selective laser 
melting via full-field infrared thermography. Addit Manuf 2018;24(July):595–605. 
https://doi.org/10.1016/j.addma.2018.10.045.

[23] Kozjek D, Carter FM, Porter C, Mogonye JE, Ehmann K, Cao J. Data-driven 
prediction of next-layer melt pool temperatures in laser powder bed fusion based 
on co-axial high-resolution Planck thermometry measurements. J Manuf Process 
2022;79(April):81–90. https://doi.org/10.1016/j.jmapro.2022.04.033.

[24] Scime L, Beuth J. Using machine learning to identify in-situ melt pool signatures 
indicative of flaw formation in a laser powder bed fusion additive manufacturing 
process. Addit Manuf 2019;25(October 2018):151–65. https://doi.org/10.1016/j. 
addma.2018.11.010.

[25] de Winton HC, Cegla F, Hooper PA, de Winton HC, Cegla F, Hooper PA. A method 
for objectively evaluating the defect detection performance of in-situ monitoring 
systems. Addit Manuf 2021;48:102431. https://doi.org/10.1016/j. 
addma.2021.102431.

[26] Croset G, Martin G, Josserond C, Lhuissier P, Blandin JJ, Dendievel R. In-situ 
layerwise monitoring of electron beam powder bed fusion using near-infrared 
imaging. Addit Manuf Feb. 2021;38. https://doi.org/10.1016/j. 
addma.2020.101767.

[27] Mohr G, Altenburg S, Ulbricht A, Heinrich P, Baum B, Maierhofer C, et al. In-situ 
defect detection in laser powder bed fusion by using thermography and optical 
tomography—comparison to computed tomography. Metals (Basel) Jan. 2020;10 
(1). https://doi.org/10.3390/met10010103.

[28] Coeck S, Bisht M, Plas J, Verbist F. Prediction of lack of fusion porosity in selective 
laser melting based on melt pool monitoring data. Addit Manuf 2019;25(October 
2018):347–56. https://doi.org/10.1016/j.addma.2018.11.015.

[29] Ren Z, Gao L, Clark S, Fezzaa K, Shevchenko P, Choi A, et al. Machine learning- 
aided real-time detection of keyhole pore generation in laser powder bed fusion. 
Science 2023:89–94. https://doi.org/10.1126/science.add4667.

[30] Martin AA, Calta NP, Khairallah SA, Wang J, Depond PJ, Fong AY, et al. Dynamics 
of pore formation during laser powder bed fusion additive manufacturing. Nat 
Commun 2019;10(1):1–10. https://doi.org/10.1038/s41467-019-10009-2.

[31] Shepp LA, Logan BF. Fourier reconstruction of a head section. IEEE Trans Nucl Sci 
1974;NS-21(3):21–43. https://doi.org/10.1109/tns.1974.6499235.

[32] Anon. Dimensioning and tolerancing. In: ANSI Stand, 2018, no. Y14, 5; 1973. 
https://doi.org/10.3139/9781569908167.017.

[33] Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri K, Schindelin J, Cardona A, et al. 
Trainable Weka Segmentation: a machine learning tool for microscopy pixel 
classification. Bioinformatics 2017;33(15):2424–6. https://doi.org/10.1093/ 
bioinformatics/btx180.

[34] Miers JC, Moore DG, Saldana C. Defect evolution in tensile loading of 316L 
processed by laser powder bed fusion. Exp Mech 2022;62(6):969–83. https://doi. 
org/10.1007/s11340-021-00815-5.

[35] Arnold C, Breuning C, Körner C. Electron-optical in situ imaging for the assessment 
of accuracy in electron beam powder bed fusion. Materials (Basel) 2021;14(23). 
https://doi.org/10.3390/ma14237240.

B. Johnstone et al.                                                                                                                                                                                                                              Journal of Manufacturing Processes 149 (2025) 1066–1077 

1077 

http://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.100-16.pdf
http://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.100-16.pdf
https://doi.org/10.1115/1.4025773
https://doi.org/10.1016/j.addma.2018.05.004
https://doi.org/10.1016/j.addma.2018.05.004
https://doi.org/10.1016/j.matdes.2019.108385
https://doi.org/10.1007/s11837-016-2234-1
https://doi.org/10.1016/j.addma.2021.102058
https://doi.org/10.1016/j.addma.2021.102058
https://doi.org/10.1016/j.addma.2019.101030
https://doi.org/10.1016/j.addma.2019.101030
http://www.ainfo.inia.uy/digital/bitstream/item/7130/1/LUZARDO-BUIATRIA-2017.pdf
http://www.ainfo.inia.uy/digital/bitstream/item/7130/1/LUZARDO-BUIATRIA-2017.pdf
https://doi.org/10.1016/j.addma.2020.101336
https://doi.org/10.1016/j.jmapro.2020.11.030
https://doi.org/10.1016/j.jmapro.2020.11.030
https://doi.org/10.1115/MSEC2015-9393
https://doi.org/10.1063/1.4864956
https://doi.org/10.1063/1.4864956
https://doi.org/10.1016/j.phpro.2014.08.097
https://doi.org/10.1016/j.phpro.2014.08.097
https://doi.org/10.26153/tsw/15566
https://doi.org/10.1016/j.addma.2019.100880
https://doi.org/10.1007/s10853-016-0631-z
http://refhub.elsevier.com/S1526-6125(25)00685-1/rf0080
https://doi.org/10.1016/j.addma.2014.12.001
https://doi.org/10.1115/1.4042108
https://doi.org/10.1115/1.4042108
http://refhub.elsevier.com/S1526-6125(25)00685-1/rf0095
http://refhub.elsevier.com/S1526-6125(25)00685-1/rf0095
https://doi.org/10.1016/j.addma.2020.101359
https://doi.org/10.1016/j.addma.2018.10.045
https://doi.org/10.1016/j.jmapro.2022.04.033
https://doi.org/10.1016/j.addma.2018.11.010
https://doi.org/10.1016/j.addma.2018.11.010
https://doi.org/10.1016/j.addma.2021.102431
https://doi.org/10.1016/j.addma.2021.102431
https://doi.org/10.1016/j.addma.2020.101767
https://doi.org/10.1016/j.addma.2020.101767
https://doi.org/10.3390/met10010103
https://doi.org/10.1016/j.addma.2018.11.015
https://doi.org/10.1126/science.add4667
https://doi.org/10.1038/s41467-019-10009-2
https://doi.org/10.1109/tns.1974.6499235
https://doi.org/10.3139/9781569908167.017
https://doi.org/10.1093/bioinformatics/btx180
https://doi.org/10.1093/bioinformatics/btx180
https://doi.org/10.1007/s11340-021-00815-5
https://doi.org/10.1007/s11340-021-00815-5
https://doi.org/10.3390/ma14237240

	Effect of threshold parameters on infrared segmentation methods for porosity detection in electron beam powder bed fusion
	1 Background
	2 Methods
	2.1 Sample design
	2.2 IR image processing and segmentation methods
	2.3 XCT volume processing
	2.4 XCT to IR comparison analysis

	3 Results
	3.1 Infrared and X-Ray computed tomography imaging results
	3.2 Static thresholding segmentation
	3.3 Statistical thresholding segmentation

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	References


