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ARTICLE INFO ABSTRACT

Keywords: This study seeks to better understand the degradation of the contact tip with respect to WAAM for a 316L
Wire arc additive manufacturing wire electrode as well as explore methods of monitoring the contact tip state from process data. The contact
DED-arc

tip, a consumable component, positions the wire and serves as the electrical contact surface between the wire
electrode and the welding power supply. The wear of the contact tip was characterized in terms of material
loss and material contamination for a set of tips worn to discrete levels as measured by the amount of wire fed
or arc time. Geometrical characterization found a 49% increase in the bore exit area at 180 meters of wire fed.
Machine learning models were developed to predict the relative bore exit area of the contact tip from arc-based
process data and a random forest classifier exhibited favorable performance with a cross-validated f1-score of
0.84. The regression architecture implemented a multi-layer perceptron with the ability to predict the relative
exit area with an R? score of 0.75. Key features used in the prediction include the standard deviation of the
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voltage and the time between shorts.

1. Introduction

Wire arc additive manufacturing, also known as DED-arc, produces
near-net shape components in a layer-by-layer manner by coupling an
arc welder with a motion platform, such as a robotic arm or CNC [1,2].
WAAM is of particular interest to the aerospace, naval, tooling and
die, and nuclear industries due to WAAM'’s capability to produce large-
scale components of low to medium complexity combined with high
deposition rates, low cost of equipment and feedstock, and familiarity
with traditional welding [3-5]. Current adoption of the WAAM process
is significantly limited by geometrical inaccuracy and defects (voids,
gas porosity, cracks, etc.) from the stochastic nature of the electrical
arc, improper weld settings or poor process planning [6]. To address
these limitations, a considerable body of literature focuses on detecting,
mitigating, or controlling defects to ensure the desired geometrical
and metallurgical outcomes [7-12]. Low repeatability and geometric
accuracy associated with WAAM necessitates controls as well as defect
monitoring to produce quality parts. Surprisingly, the contact tube is
often overlooked in process monitoring and control schemes in DED-
arc, despite serving a key role in the welding systems as it positions
the wire feedstock and delivers the welding current.

Research in consumable wear in additive manufacturing gives in-
sight into potential defect formation mechanism, and reduces cost
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uncertainty serving to increase industry adoption. In powder bed fu-
sion, abrasive wear in the recoater blade causes powder bed streaking,
a common defect, which drastically reduces build quality. Worn areas
in the recoater blade lead to locally variation in the topology of the
powder bed after the recoating pass [13,14]. Current state of the art
in process monitoring implements profilometer scans of the bed in
between layers or top down imaging to identify such defects in the
powder bed surface [15]. Similarly in powder-blown laser directed
energy deposition (powder DED-LB), wear of the nozzle changes the
powder-gas dynamics and clogs can form on the powder delivery nozzle
with both phenomena negatively affecting the powder catchment effi-
ciency [16,17]. In DED-arc, the analog to the powder delivery nozzle
would be the contact tube. The contact tube-electrode wire system is
a sliding electrical contact, delivering high current loads in a small
area. The contact tube wears over time due to adhesive and abrasive
wear as wire is continuously fed through the tube under high current
loads during the welding process [18]. Wear of the contact tube leads
to wire positioning errors, resistance changes, poor arc characteristics,
and eventually critical failure in the welding process.

The contact tip or contact tube applies the welding voltage and
conducts the current to the consumable wire electrode. Due to the
manufacturing process involved in drawing and winding the wire onto
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a spool, the wire has a cast or direction it curves in. The wire will
form multiple points of contact with the inner surface of the contact
tip because of the wire cast [18,19]. Prior research suggests the last
point of contact conducts the majority of current and typically occurs
in last i of contact tip [20]. As a result, the main wear zone is in the last
quarter. This portion of the contact tip conducts the most current and
subsequently experiences the most ohmic heating, increasing adhesive
and abrasive wear. The wire-contact tip interface meets the criterion for
abrasive wear as the hardness of steels and other high strength alloys
is greater than one and half times the hardness of copper [18,21,22].
Lopez et al. found contamination of steel in near the exit of the contact
tip attributed to spatter, and a reduction in hardness of the copper
alloy [21]. Additionally, during the welding process small oxides and
intermetallic compounds can form in the contact tip leading to as-
perities forming between the contact tip and wire electrode. Modern
contact tips have hardening elements added such as zinc and zirconium,
however, evidence of abrasive wear was found in the work done for this
study.

Adhesive wear due to cold welds or hot welds forming within the
tip is the other wear mechanism. After a cold or hot weld is formed, the
feeder must have sufficient force to shear the weld between the contact
tip and wire or failure due to lack of feeding occurs. Like welded joints,
the weld may be stronger than the material around it causing the shear
to occur in the copper metal or the wire around the weld [20,22].

Prior literature suggests non-copper coated electrodes wear the
contact tip inner bore more aggressively. This is due to the greater
resistance at the electrical junction and increase in hardness of the outer
surface of the wire electrode. The most abrasion occurs at arc ignition,
when the electrode is stationary, and there is high current flow required
for striking an arc [20]. This higher current flow causes more ohmic
heating, increasing the probability of a hot weld forming. When the
wire begins feeding after an arc is struck, any hot or cold welds formed
will be sheared. Reducing the arc ignition time from 61 ms to 16 ms
was found to reduce the abrasion volume by approximately 40 % [20].
Matsui et al. also found that for a given current, wear decreases as
wire feed speed increases and suggests that conduction heat transfer
is increased due to room temperature wire entering the contact tip.

As the contact tip wears, positional errors occur in the wire elec-
trode as well as potential contaminants such as copper and oxides being
transferred to the melt pool [22]. In the case of traditional welding,
positioning error can reduce the strength of a welded joint by up to 50
percent [18]. Eventually, a worn contact tip will lead to catastrophic
failure in the welding process. This can occur due to the feeder being
unable to shear a weld between the electrode and contact tube or from
an inability of the contact tip to properly transfer current resulting
in an unstable arc and poor metal transfer [18,19]. With respect to
WAADM, contact tip wear leads to the breakdown of process monitoring
and control schemes. Reference current levels shift, which cause issues
in any schemes that rely on this, such as a contact tip to work piece
distance control loop.

Quinn et al. developed and proposed an algorithm to define a wear
metric from welding signals to detect contact tip wear in process during
GMAW [18,19]. They found that the integrand of the power spectral
density of voltage in the low frequency regime (0.3 to 4 Hz) increased
linearly with contact tip wear and then transitioned to non-linear
erratic behavior at extreme wear levels. The low frequency variations
in wire feed speed at the contact tip due to wear, leads to variations
in the electrode extension and thus arc length which is reflected in the
voltage. Failure criteria were defined as the wear metric exceeding a
specified threshold or experiencing non-linear behavior [18,19]. Other
than this method, the primary method for monitoring contact tips
found in standard welding guidelines was developing a time-based
maintenance log. With the growth of large-scale wire arc additive
manufacturing, components require a high amount of arc time and
weld bead length, and the wear of the contact tip should be addressed.
Additionally, DED-arc studies often use materials that require uncoated
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Table 1
Percent composition of ER316LSi wire from OEM.
Element Fe Cr Ni Mn Mo Si C
ER-316LSi Bal 18.4 11.5 1.9 2.3 0.79-0.87 0.01
Table 2
Experiment matrix.
Trial Layers Arc time (min) Wire fed (m)
Al 1 3 30.5
A2 1 3 30.5
B1 1 6 62.3
C1 2 12 124.7
D1 3 18 187.0
El 4 24 249.4
E2¢ 4 24 249.4
F1? 5 30 311.7
F2? 5 30 343
Note

2 Indicates trial was stopped due to contact tip failure prior to reaching target wire-fed.

feedstock such as tool steel, maraging steel, and other advanced alloys
leading to more aggressive wear conditions than the more common
copper coated welding filler wire. This study investigates contact tip
wear in the context of DED-arc with a focus on understanding the
wear condition of the contact tip with respect to wire fed, the affects
of wear on the additive process, and process monitoring schemes to
enable an evaluation of the wear state. The contact tip bore area was
measured along the bore axis for the first time, in addition to measuring
the change in area at the exit. Abrasive wear was observed not only
on surface of contact tip, but also on the surface of deposited steel
that was transferred to the contact tip. Process signal analysis was
performed during the feature engineering step of the machine learning
architecture, quantifying impact on key process metrics such as the
linear energy density (energy per unit length of weld). This work
culminated in development of a machine learning based scheme to
provide predictions of the wear state from in process data.

2. Material and methods
2.1. Design of experiments and system configuration

The experiment set was designed to generate a set of contact tips
worn to a pre-determined level as measured by the amount of wire
fed or arc time, and to generate a sufficient amount of in-situ data
for machine learning models. The material chosen was a an uncoated
316LSi stainless steel wire electrode due to wide-spread use across
various industries in addition to bare stainless steel wearing the contact
tip more aggressively. The wire composition is presented in Table 1
below.

A serpentine toolpath was selected to ensure a high amount of wire
fed per layer and to reduce the number of arc ignition events. Experi-
ments consisted of a series of parts with toolpaths measuring from 30 to
300 m of wire fed as shown in the experiment matrix in Table 2. Trials
B1-F2 utilized a serpentine toolpath approximately 200 mm by 100 mm
in area. While, trial A1 and A2 had smaller toolpath of approximately
100 mm by 100 mm. The spacing between adjacent beads was 8.9 mm
in all cases. Experiment Al and A2 served the purpose of generating
contact tips at 30 m of wire fed and the data from these experiments
were not used in training models. Trial E2 experienced partial melting
of the contact tip during arc extinguishment. Similarly, trials F1 and
F2 had a target of 360 m of wire fed (eight layers) but the contact
tip experienced failure at approximately 311.7 and 343 m respectively.
The in-situ data from F1 and F2 was used in training models; however,
the contact tips could not be used for ex-situ characterization.
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Table 3

Deposition parameters.
Parameter
Mode Pulsed spray
Average voltage (V) 23
Average current (A) 250
Wire feed speed (m/min) 10.4
CTWD (mm) 12.7
Traverse speed (m/min) 0.76
Deposition rate (kg/h) 5.0
Dwell time (s) 180

The welding and motion platform process parameters were held at
constant set points during each experimental trial. Deposition process
parameters are summarized in Table 3 below. It is worth noting that,
the waveform controller was constantly running and adjusting the
voltage, current, and wire feed speed during the current and voltage
waveform. However, the internal waveform controls do not account for
wear in the contact tip.

A retrofit WAAM system consisting of a 3-axis CNC machine and
welding power supply was utilized for the depositions. A custom
adapter holds the torch to the machine spindle shown in Fig. 1. A
PowerWave S500 welder, and 4R220 wire feeder unit were used for the
GMAW process. A Windows PC connected to the local machine network
facilitated in-situ weld data acquisition with PowerWave Manager.

2.2. Contact tip wear characterization

Following depositions, the contact tips were characterized with
scanning electron microscopy, optical profilometry and digital mi-
croscopy. Contact tips were sectioned at the center along the longitu-
dinal axis. To allow for repeated sectioning, each contact tip was held
in a modified gas diffuser assembly with flat edges.

Each contact tip was scanned using a Keyence VR-6200 optical
profilometer which operates using structured light scanning. Each scan
consisted of a 7.6 mm by 5.7 mm region of interest yielding an XY
lateral resolution of 2.468 pm and height resolution of 4.0 pm. Within
the profilometer software, the reference plane was set to a best fit plane
containing the areas around the bore. From the topographical scan, the
bore area was computed along the length of the contact tip. A simple
Python script traversed along the X-direction of each scan extracting
Y-Z slices. To compute the area, each Y-Z slice was then numerically
integrated with the Trapezoidal Rule, seen in Eq. (1).
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The relative bore area at the exit of the contact tip was computed.
A least squares linear regression was implemented to relate the amount
of wire fed or sliding distance to the relative bore exit area.

2.3. Arc data aggregation

Following experimental trials, the data from each experiment was
aggregated across experimental trials into an aggregate dataset. Prior
to the experimental trials, test beads were deposited with the same
depositions parameters to determine the pulse waveform frequency
which was found to be 230 Hz. For each trial, welder power supply
data was collected at 1200 Hz and during aggregation, the arc data
(current and voltage) was low pass filtered to 600 Hz with a 10th
order Butterworth filter to avoid aliasing. The start and end of each
bead were removed due to transient characteristics of the arc ignition
and arc extinguishment as well as the associated variation in bead
height and thus contact tip to work piece distance [5]. Similarly, data
from the corners of the toolpath were removed from the aggregate
dataset due to height build up associated with machine deceleration
and acceleration [23]. The aggregate dataset is summarized below in
Table 4.
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Fig. 1. Torch and CNC Spindle.

Table 4
Summary of aggregate dataset.

Wire fed (m) Time (min) Data points (10°)
[0,62.3] 53 1.9
[62.3,124.7] 53 1.9
[124.7,187.0] 44 1.6
[187.0,249.4] 22 0.8
[249.4,311.7] 11 0.4
Total 187 6.7

2.4. Machine learning architecture

For both classification and regression, a set of features were gener-
ated from the filtered aggregate dataset. A moving window approach
was taken with various window sizes to generate the feature space.
Standard statistical features such as the four statistical moments (mean,
standard deviation, kurtosis and skewness) were computed on the
current, voltage, and wire feed speed. In addition, the peak and back-
ground current and voltage (from the pulsed waveform) were extracted.
The more welding specific features were computed on the pulse wave-
form based on prior knowledge. The root mean square of the voltage
signal in 0 to 10 Hz frequency band was used due to Quinn et al.
finding a trend with wear [18]. Similarly, the RMS of the voltage signal
about the pulse frequency (200 to 300 Hz) was computed as a feature.
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Fig. 2. Digital images of control (factory new), Al, C1, and E1 contact tips.

To capture information about the current and voltage waveform, the
time between maximum and minimum extrema of the waveform was
measured and statistics on the spectrogram within the frequency band
of the pulsed waveform. A complete list of features generated is listed in
the appendix along. Formally the feature generation step is described in
Eq. (3). The filtered aggregate dataset, composed of the process signal
data, is denoted as 3x N matrix, X, where N indicates the total number
of data-points collected. The feature matrix is denoted as X', following
the feature generation process, X’ is N/M x 71 real-valued matrix
where M represents the selected windowing size.

X e R3><N S X' e RﬂxN/M 2

To perform classification, a random forest was utilized and discrete
classes were defined to represent the state of the contact tip at the
start of each layer and labeled with the relative bore area from the
geometrical analysis regression. These classes corresponded to data
collected during the first 15 m of wire fed in each layer as summarized
in Table 5. If one were to implement the model live, one would
receive an evaluation of the contact tip at the start of each layer and
determine whether a replacement is needed. Model hyperparameters
were tuned with an exhaustive grid search during which evaluation was
performed with a 5-fold cross validation scheme. Evaluation metrics
were the fl-score, the harmonic mean of accuracy and precision shown
in Eq. (2) [24]. To address the imbalance of the data set due to the
nature of the design of experiments, synthetic minority oversampling
technique (SMOTE) was implemented after the splitting of the data set
for folds, and the train test split. Prior to hyperparameter tuning, the
feature space was scaled to have zero mean and unit variance. Once
hyperparameters were selected, final model training and evaluation
were performed with 75% of the dataset reserved as a training dataset
and 25% of dataset reserved as test dataset.

_ TP 3)
precision+recall  Tpi Ll (Fp4+ FN)

For regression, a similar appzroach was taken with a multi-layer
perceptron also known as an artificial neural network. No bins were cre-
ated and the master dataset was continuously labeled with relative bore

1= 2prect’sion * recall
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Table 5
Summary of classes.

Label (relative bore area) Wire fed bin (m) Data points (10%)

0.96 [0,15.2] 460
1.04 [62.3,77.5] 460
1.14 [124.7,139.9] 390
1.24 [187.0,202.2] 190
1.35 [249.4,264.6] 98

area. An exhaustive grid search was implemented with coefficient of
determination (R?) function serving as the scoring function, described
in Eq. (4)

M/N .
RE=1— Z,—=1/ (y,- - y,-)2 @)
SN - 52
3. Results

The control and worn contact tips were characterized with a variety
of methods, including a digital microscope, scanning electron micro-
scope, and optical profilometer. Samples digital images of contact tip
Al, C1, and E1 are shown in Fig. 2. Contact Tip A1 had been used for 30
m of wire fed and an arc time of approximately 3 min. The wear region
is restricted to around a millimeter from the bore exit, with darkened
regions from the welding fumes. A small pad of steel is also visible,
this is likely from partial melting of the wire at arc extinguishment.
Contact tip C1 was used for 124 m of wire fed ( 12 min of arc time)
and one can observe the increase in length of the wear zone. The area
of oxidized surfaces has grown, and there are more dispersed globules
of solidified steel present in the wear region. Finally, contact tip E1
was worn with approximately 24 min of arc time and 249 m of wire
electrode. By inspection, one can observe not only the increase in length
of the wear zone but also the increased width of the bore.
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Fig. 3. SEM Images of Bore Exit Region (E1).
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Fig. 4. Line spectrum data from stainless deposit on E1.

3.1. SEM/EDS analysis for material contamination

To confirm potential material contamination within the bore, por-
tions of contact tip E1 were imaged with a scanning electron mi-
croscope. Fig. 3 illustrates the exit region of the bore, which has a
non-uniform surface, varying in color and texture. One can observe the
height difference and damage to the surface in the form of roughness,
pock marks, and scratches. Among the oxide surface layer, there are
small globules of solidified metal and exposed surfaces.

To confirm the alloy composition and investigate the transition
region, a line spectrum was also taken across one of the stainless
deposits. Fig. 4 illustrates the spectrum data for the line with counts per
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second for each metal element of interest (contact tip alloy and 316L
alloy elements). In the region containing the deposit, around 70 to 180
pm, there is significantly greater count of iron and chromium with a
range of 50 to 150 counts. Additionally, other 316L alloying elements
are present at a count less than 50 (Nickel, Molybdenum, Manganese,
etc.). Due to these elements’ low concentration in 316L, there is less
distinction in their counts between the steel deposit region and the
bore surface region. An interesting observation is the peaks of copper
throughout the 70 to 180 pm range of the steel deposit. This is likely
due to the miscibility gap between copper and iron and indicates that
melted copper was dispersed in the steel [25]. Liquid phase separation
of copper and iron occurs because of the miscibility gap and the copper
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Electron Image

Fig. 5. EDS Map of bore exit region of sample E1.

solidifies first. Subsequently, the steel cools and solidifies. This leads to
the formation of copper globules or spherules which matches with the
line spectrum data, as the peaks occur at edges or changes in the deposit
profile.

Fig. 5 visualizes the energy dispersive spectroscopy map of the bore
exit region. This map corroborates later observations made through
visual inspection of the digital microscope images. One can also observe
that the area of exposed copper surface has been reduced, with some
small regions of higher copper concentration remaining. Evidence of
small steel deposits are present in the map for iron with iron par-
ticles dispersed throughout the region, and small areas of high iron
concentration indicating globules of steel.

To confirm abrasive wear, images were taken at 500X (left) and
2000X (right) capturing wear tracks in Fig. 6. The top two images
are centered on a portion of the contact tip that had an exposed
CuCrZr surface. Parallel scratches are present indicative of abrasion
from the steel wire or asperities. Further, the bottom image captured
scratches on a previously deposited steel globule. The steel globule
likely formed due partial melting at the wire interface with the contact
tip or spatter traveling up the tube. Abrasive wear can be inferred
from the uniformity in the top-surface as compared to the edges of
the globule and other deposited globules. Small beads of copper are
embedded in the edges of the globule indicating copper melting and
precipitating out of solution as it solidifies.

3.2. Optical profilometry for material loss

From the topographical maps of each contact tip, the area of the
bore region was computed with trapezoidal integration as detailed in
2.4. Fig. 7 illustrates the bore area as a function of the position along
the bore. The wear region is restricted to the last two millimeters,
[10,12] on the X-axis, for the contact tip for Al and B1. For C1, the
wear region has grown to [6, 12] mm and for D1 and El, the wear
region comprises the entire scanned region [0, 12] mm. The geometric
results indicate that the wear of D1, and E1 experiences wear further
from the exit region. The wear in the [0, 6] millimeter range (further
from the exit of the contact tip) is likely only mechanical in nature.
This is supported by the lack of solidified steel and carbon further up
the bore, observed in digital images.
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For comparison to prior literature, and for the machine learning
architectures, the area at the exit was extracted from the bore area and
position data. The relative exit area for each contact tip is illustrated
in Fig. 8. A least squares linear regression was computed, and the line
of best fit is shown. The error bars on each area datum represent the
total uncertainty from the propagation of uncertainty during numerical
integration. The area was found to increase linearly with the amount
of wire fed. The maximum increase in area observed was 49 percent in
contact C1. The enlargement of the bore will result in a shift in the wire
position. By itself, the wire could be mispositioned by up to 0.5 mm at
the contact tip exit. However, this position error could reach significant
levels at the workpiece when considering sine error over the contact tip
to workpiece distance.

3.3. Process signals analysis

To understand how the welding process is affected by the wear of
the contact tip, the welding signals were analyzed with the statistical
features generated, as well as the linear energy density. Linear energy
density is a variable to measure heat input to the weld per unit length.
The heat input and wire feed speed to traverse speed ratio are physical
measures that affect the resultant weld bead geometry. Additionally,
selected features were used to visualize changes to the welding process.
Histograms of the selected features were generated from layer 1 and
layer 4 data with fixed width bins for each variable. Fig. 9 illustrates
the histograms with layer one in blue and layer four in green. The
dashed lines in each histogram represent the 95% expectation bounds
associated with three standard deviations of the data set. Comparing
the histogram of linear energy density, the bounds grow from approx-
imately [430, 480] J/mm to [325, 575] J/mm. Similar observations
can be made on the 95% intervals for each feature. In layer 1 the
distribution of the WFS standard deviation of has very few instances
beyond 2 ipm. By layer 4, there are many datums beyond 2 ipm, which
is a signature of poor feeding.

3.4. Machine learning for classification

A random forest classifier (RFC) was utilized to classify the arc
data into five distinct classes of wear, as described by the relative
change in contact tip area. The feature space and bins for classes are
described in Section 2.4. An exhaustive grid search was performed to
tune the hyperparameters of the RFC. Two key hyperparameters are
the minimum samples split, which described the minimum number of
samples to split a node, and the max features, which describes the
number of features selected at random when searching for a split. Fig.
10 illustrates the results of a 5-fold cross validated grid search for the
minimum samples split and max features hyperparameters, with the
color gradient of each cell determined by the mean test score of that
hyperparameter combination.

The F1-score described in Eq. (3) was used as the scoring metric. As
the minimum number of samples split increases, the performance of the
classifier degrades slightly. The best value for minimum samples split
was found to be two. Across the domain of max feature hyperparam-
eter, there is not a clear trend between the hyperparameter value and
mean test score. However, the range of 12 to 24 gives favorable results
at minimum samples split value of two. A value of 16 was chosen for
the max features parameter due to the performance and to reduce the
risk of overfitting a model.

Following hyperparameter tuning, the random forest classifier was
evaluated with 5-fold cross validation at various window sizes. Window
size refers to the number of data points used to compute a given
feature datum. Increasing the window size increases the amount of
time associated for each feature datum, which has an effect of greater
smoothing in the time domain as increasing the observation window
for wear-related phenomena in the arc data. Decreasing the window
size increases the granularity in the data when viewed from the time
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Fig. 6. Wear tracks present on copper and steel surfaces.
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Fig. 7. Bore area as a function of X position along the bore.

domain;however, too small of a window may miss indicators of wear
in the arc data and wire feed speed. A summary of the performance of
the model for various window sizes is provided in Table 6. The smallest
window size of 256 had the lowest F1-score, which is to be expected, as
this data will contain a few pulse waveforms where the effects of wear
may not be observed. With the window size increased to 512, the F1-
score improved to 0.81 + 0.01. Beyond 1024, model improvements due
to smoothing are reduced. The classifier performance exhibited maxi-
mum F1-score of 0.84 for window size of 1024. Given this, subsequent
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machine learning models were evaluated with a window size of 1024
data points. A sample confusion matrix for N = 1024 is shown in Fig.
11

To better understand which features are used by the classification
model to make a prediction, the permutation-based feature importance
was computed with the trained model. With permutation feature impor-
tance, a single feature is corrupted by randomly shuffling the feature
column and the associated labels. Fig. 12 illustrated the feature impor-
tance as measured by the mean accuracy decrease in the model. For
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Table 6

Window size study.

Window size Window size (ms) Average fl-score Standard deviation

256 213 0.79 0.01
512 426 0.81 0.01
1024 853 0.84 0.01
1536 1280 0.82 0.02
2048 1706 0.82 0.03

readability, the top ten features are shown. The permutation corruption
of the standard deviation of the voltage reduced the model’s accuracy

the greatest followed by the standard deviation of the wire feed speed.
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Fig. 11. Confusion matrix visualizing the classification of the data set with a window
size of N = 1024.

3.5. Machine learning for regression

A multilayer perceptron or artificial neural network regressor was
developed and evaluated in a similar manner to the classifier. Hyper-
parameter tuning results from a 5-fold CV grid search are presented
in Fig. 13 below. Alpha, or the regularization parameter, was swept
from a value of 1E-4 to 1E+3. Potential hidden layer sizes were
chosen based on fractional amount of the sum of the input layers
(number of features) and output layer (prediction of relative bore area),
which is equivalent to 72. As alpha increases from 1E—4, the model
performance generally improved across the selection of hidden layers.
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Fig. 15 visualizes the permutation feature importance for the multi-

0.0001 0.7 layer perceptron regressor model. Voltage based features dominate the
: 0.6 models resultant predictions with the standard deviation of the voltage
0.001 ) and the mean background voltage. Physically, the background voltage
0.01 05 ¢ corresponds to the voltage during the short portion of the waveform,
0.1 S when the electrode and workpiece are shorted through the droplet.
2 : 0.4 NV’ Interestingly, permutation of the mean background voltage period or
o 1.0 o time between shorts, reduced the R? score by ~0.35. Other features of
<C 0.3 € significance for the model include the kurtosis and skew of the voltage
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10.0 % signal as well as the mean period of the peaks in the voltage waveform.
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Fig. 13. MLP hyperparameter tuning.

From the process signals to the results of the machine learning
models, insights about potential detriments of contact tip wear and the
appropriate features to compute for monitoring wear are gained. The
random forest classifier shows better performance than the regression
model which is likely due to less than thermal biasing of the arc signals
and simplifying the problem of predicting wear into classification. With
a classification-based approach, an upper limit on the bore wear would
be chosen and the model could be implemented as a go/no-go check at

This behavior reverses beyond an alpha of 0.1, with model performance
dropping significantly beyond an alpha of 10. The architectures with
two hidden layers tended to outperform a single hidden layer, with
the best performance achieved with three hidden layers (250, 144,
72). Larger neural network architectures beyond this were avoided to
reduce the potential to over-fit the modal.

The MLP regressor was trained and evaluated with an alpha of 0.01,
a single output layer, and three hidden layers of 250, 144 and 72
neurons resulting in an R? score of 0.75. Fig. 14 provides an overview
of the model performance on a 10 percent random sample of the test
data set. The MLP regressor tends to shows a favorable balance of over
and under-prediction for a significant portion of the predicted domain.
This behavior is diminished beyond a value of 1.2 and the model
shifts to over-predicting, similar to the transition seen in random forest
classifier confusion. This transition is less pronounced with the MLP
predicting fewer extreme outliers likely due to the similar predictive
features being present across continuous wear values as opposed to
discrete bins to classify.
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the start of each layer. This would provide an evaluation of the current
state of the contact tip and allow an operator to quickly determine if it
should be changed. The top three important features, as computed with
permutation feature importance are the standard deviation of each data
stream and the standard deviation of the peak voltage.

The performance of the regression model could likely be improved
by further examination of the frequency domain. From the layer 4
histograms of selected features, Fig. 9, one can observe a bimodal
distribution indicating that the arc behavior is shifting between stable
and unstable behavior when in a worn state. Such alternating behavior
may explain why discrete classifiers can sometimes outperform con-
tinuous regression models for certain wear states. With the bimodal
distribution, some of the feature windows will appear stable and similar
in value to layer 1’s distribution. Increasing the window size may
provide more smoothing at the cost of reducing potential signatures of
wear in the arc signal. This effect was observed in the classification
model where the performance increased less as the window size in-
creased. From Fig. 15, the most critical feature for this particular model
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Fig. 14. MLP Performance visualized with a 10% random sample. (a) actual relative bore area against relative bore area (b) residuals compared against predicted values.
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Fig. 15. Permutation based feature importance as measured by the mean R? score decrease with the MLP regressor.

is the standard deviation of the voltage, followed by other voltage
based features. This is contrasted by the classifier, where standard
deviation of the voltage was still the highest ranked feature; however,
it was followed by wire feed speed standard deviation, current standard
deviation and the standard deviation of the peak voltage. This pattern
suggests that classifiers benefit from diverse feature combinations to
establish class boundaries, while regression models may rely more
heavily on features that vary continuously with wear progression,
particularly those related to the short-circuit phase. The MLP regressor
appears to better fit data across the domain without overfitting in
the portions of the predicted domain. This likely leads to the model
performing more reliably than the RFC. Given the characteristics of
each model’s predictions, the MLP regressor displays a balance of
favorable traits with over prediction, a relatively fast training time,
and few signs of overfitting. Both models demonstrate some robustness
and the ability to make appropriate predictions even if one data stream
becomes corrupted, which represents an important consideration when
evaluating potential industrial implementations where sensor reliability
may vary.

4.2. Contact tip characterization

The physical signs of wear on the contact tip suggest that the
variation in voltage is likely due to poor feeding and wire adhesion

1472

within the contact tip. The wire feed speed is reported at the roller,
while any changes in the wire feed speed at the torch will result in
variations in the voltage as the electrical stick out changes. Quinn et al.
observed that there is a discrepancy between the wire feed speed at the
roller and at the exit of the torch [19]. This is likely why wire feed
speed features were less important for the models presented.

SEM and EDS analyses revealed both abrasive and adhesive wear
mechanisms operating simultaneously. The observed parallel scratches
in Fig. 6 provide evidence of abrasive wear from the steel wire sliding
against the copper surface. Meanwhile, the solidified steel globules,
especially near the exit region, indicate adhesive wear facilitated by
localized heating, aligning with Matsui et al.’s findings [20]. Wear
progression patterns suggest a shift in dominant mechanisms over
time. In early stages (e.g., contact tip Al with 30 m of wire fed),
mechanical wear dominates and remains localized near the exit. As
wire feed increases, thermal effects become more significant, evidenced
by increased steel deposits and copper-iron interactions seen in the line
spectrum data (Fig. 4). The miscibility gap between copper and iron
noted by Curiotto et al. [25] creates conditions where melted copper
disperses within steel deposits, potentially creating a cycle of adhesion
and abrasion that accelerates wear. The wear closer to the exit region
is likely electro-mechanical in nature, with the adhesive/abrasive wear
mechanism as described in Section 1. This is supported by indicators
of melting and solidification and greater material contamination near
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the exit. Additionally, the increase in length of the wear zone indicates
that the electrical junction or point of current transfer shifts along
the longitudinal axis of the bore. As the bore cross-section becomes
enlarged, the point of contact may shift. This would also shift the
effective electrical stick out and associated resistance. Overall, the
geometrical wear results are similar to prior results in the literature
that found a linear relationship between wire feed and material loss or
bore enlargement [20,21].

Quinn et al. utilized the PSD of the voltage in the low frequency
regime as well as the RMS, which they theorized would capture changes
in the electrical stick out due to wear. In this study, the low frequency
RMS was found to be less important than the RMS in the pulse fre-
quency for each model’s prediction. This may be due to the much
higher pulse frequency used in the waveform of the welding power
supply as compared to prior studies. Additionally, from the process
signal analysis the wear of the contact tip changes both the linear
energy density and increases the variation in the wire feed speed.
Both of these factors will compound to directly change the weld bead
geometry. Linear energy density, a measure of heat input, affects the
width and height of the weld bead and the wire feed speed is tied to
the mass flow rate or material input into the melt pool [4,26].

The prominence of mean background voltage and mean period of
the background voltage (time between shorts) in feature importance
suggests specific mechanisms linking contact tip wear to welding pro-
cess stability. As the bore enlarges, the electrical contact between
wire and tip becomes less consistent, potentially creating variations
in the short-circuit phase of metal transfer that manifest in the back-
ground voltage signal. These variations appear particularly sensitive
to wear state, making them valuable diagnostic indicators. The pulsed
waveform (230 Hz) likely influences wear progression differently than
constant current or constant voltage processes would. Peak current
phases may accelerate adhesive wear through increased heating, while
background current periods allow cooling and solidification of melted
material. This thermal cycling could explain the observed pattern of
discrete steel globules rather than continuous deposits. The importance
of temporal features like the mean period of voltage peaks supports
this interpretation, suggesting that wear affects both the magnitude and
timing of metal transfer processes.

5. Conclusion

This research investigated contact tip wear in the context of wire-arc
additive manufacturing or DED-arc, providing the first comprehensive
characterization of both geometrical wear and material contamination
along the entire bore length. This work focuses on a critical consumable
component in the welding circuit which should be monitored in large-
scale depositions to ensure quality outcomes. A novel framework was
developed to assess the wear state of the contact tip utilizing in-
process arc data collected from a welding power supply during the
DED-arc process, eliminating the need for additional sensors or process
interruption. Evidence of abrasive and adhesive wear mechanisms were
found in this study, with the first documented observation of wear
tracks present in both the copper surface and steel globules that were
deposited in the bore. Material contamination due to adhesive wear
and spatter travel were characterized with EDS, revealing a complex
interaction between the copper contact tip material and steel deposits,
including evidence of liquid phase separation during solidification.

Statistical changes in key process indicators such as linear energy
density, wire feed speed, and the current and voltage demonstrated the
impact of wear on process stability. A random forest classifier achieved
a cross-validated fl-score of 0.84 for discrete wear states, while a
multi-layer perceptron regressor demonstrated an R’ score of 0.75
for continuous prediction of bore enlargement. These models could
be deployed in industrial settings through integration with existing
welding power supplies, providing real-time evaluation of contact tip
condition at the start of each layer. Such capability would enable
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automated maintenance scheduling and prevent quality issues before
in the deposited material. For manufacturers, this translates to reduced
material waste, improved process reliability, and better documentation
of consumable life cycles.

Most significantly, this work establishes a foundation for transform-
ing contact tip wear from an unpredictable failure mode into a mon-
itored and managed process variable. By leveraging readily available
electrical signals through appropriate feature extraction and machine
learning techniques, depositions systems can implement real-time mon-
itoring without additional sensors or equipment. Future development
of this approach should focus on validating the models across broader
material combinations and process parameters, with particular empha-
sis on integrating wear monitoring into closed-loop control systems to
compensate for the affect of wear on arc signals.
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Appendix. List of features

A full list of features are listed in Tables A.7-A.9.

Table A.7
Current-based features.

Current features

Mean current

Maximum current

Minimum current

Maximum minus minimum current
Mean sum of squares

Counts of values above mean
Standard deviation

Kurtosis current

Skewness current

Mean peak current

Standard deviation peak current
Kurtosis peak current

Skewness peak current

Mean background current

Standard deviation background current
Kurtosis background current

Skewness background current

Mean peak minus mean background current
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Table A.8
Voltage-based features.

Voltage features

Mean voltage

Maximum voltage

Minimum voltage

Maximum minus minimum voltage
Mean sum of squares

Counts of values above mean

Standard deviation

Kurtosis voltage

Skewness voltage

Mean peak voltage

Standard deviation peak voltage
Kurtosis peak voltage

Skewness peak voltage

Mean background voltage

Standard deviation background voltage
Kurtosis background voltage

Skewness background voltage

Mean peak minus mean background voltage

Table A.9
Additional features.

Additional features

Mean wire feed speed

Standard deviation wire feed speed

Kurtosis wire feed speed

Skewness wire feed speed

Mean resistance

Mean peak resistance

Mean background Resistance

Mean peak minus mean background resistance
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