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 A B S T R A C T

This study seeks to better understand the degradation of the contact tip with respect to WAAM for a 316L 
wire electrode as well as explore methods of monitoring the contact tip state from process data. The contact 
tip, a consumable component, positions the wire and serves as the electrical contact surface between the wire 
electrode and the welding power supply. The wear of the contact tip was characterized in terms of material 
loss and material contamination for a set of tips worn to discrete levels as measured by the amount of wire fed 
or arc time. Geometrical characterization found a 49% increase in the bore exit area at 180 meters of wire fed. 
Machine learning models were developed to predict the relative bore exit area of the contact tip from arc-based 
process data and a random forest classifier exhibited favorable performance with a cross-validated f1-score of 
0.84. The regression architecture implemented a multi-layer perceptron with the ability to predict the relative 
exit area with an 𝑅2 score of 0.75. Key features used in the prediction include the standard deviation of the 
voltage and the time between shorts.
1. Introduction

Wire arc additive manufacturing, also known as DED-arc, produces 
near-net shape components in a layer-by-layer manner by coupling an 
arc welder with a motion platform, such as a robotic arm or CNC [1,2]. 
WAAM is of particular interest to the aerospace, naval, tooling and 
die, and nuclear industries due to WAAM’s capability to produce large-
scale components of low to medium complexity combined with high 
deposition rates, low cost of equipment and feedstock, and familiarity 
with traditional welding [3–5]. Current adoption of the WAAM process 
is significantly limited by geometrical inaccuracy and defects (voids, 
gas porosity, cracks, etc.) from the stochastic nature of the electrical 
arc, improper weld settings or poor process planning [6]. To address 
these limitations, a considerable body of literature focuses on detecting, 
mitigating, or controlling defects to ensure the desired geometrical 
and metallurgical outcomes [7–12]. Low repeatability and geometric 
accuracy associated with WAAM necessitates controls as well as defect 
monitoring to produce quality parts. Surprisingly, the contact tube is 
often overlooked in process monitoring and control schemes in DED-
arc, despite serving a key role in the welding systems as it positions 
the wire feedstock and delivers the welding current.

Research in consumable wear in additive manufacturing gives in-
sight into potential defect formation mechanism, and reduces cost 
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uncertainty serving to increase industry adoption. In powder bed fu-
sion, abrasive wear in the recoater blade causes powder bed streaking, 
a common defect, which drastically reduces build quality. Worn areas 
in the recoater blade lead to locally variation in the topology of the 
powder bed after the recoating pass [13,14]. Current state of the art 
in process monitoring implements profilometer scans of the bed in 
between layers or top down imaging to identify such defects in the 
powder bed surface [15]. Similarly in powder-blown laser directed 
energy deposition (powder DED-LB), wear of the nozzle changes the 
powder-gas dynamics and clogs can form on the powder delivery nozzle 
with both phenomena negatively affecting the powder catchment effi-
ciency [16,17]. In DED-arc, the analog to the powder delivery nozzle 
would be the contact tube. The contact tube-electrode wire system is 
a sliding electrical contact, delivering high current loads in a small 
area. The contact tube wears over time due to adhesive and abrasive 
wear as wire is continuously fed through the tube under high current 
loads during the welding process [18]. Wear of the contact tube leads 
to wire positioning errors, resistance changes, poor arc characteristics, 
and eventually critical failure in the welding process.

The contact tip or contact tube applies the welding voltage and 
conducts the current to the consumable wire electrode. Due to the 
manufacturing process involved in drawing and winding the wire onto 
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a spool, the wire has a cast or direction it curves in. The wire will 
form multiple points of contact with the inner surface of the contact 
tip because of the wire cast [18,19]. Prior research suggests the last 
point of contact conducts the majority of current and typically occurs 
in last 14  of contact tip [20]. As a result, the main wear zone is in the last 
quarter. This portion of the contact tip conducts the most current and 
subsequently experiences the most ohmic heating, increasing adhesive 
and abrasive wear. The wire-contact tip interface meets the criterion for 
abrasive wear as the hardness of steels and other high strength alloys 
is greater than one and half times the hardness of copper [18,21,22]. 
Lopez et al. found contamination of steel in near the exit of the contact 
tip attributed to spatter, and a reduction in hardness of the copper 
alloy [21]. Additionally, during the welding process small oxides and 
intermetallic compounds can form in the contact tip leading to as-
perities forming between the contact tip and wire electrode. Modern 
contact tips have hardening elements added such as zinc and zirconium, 
however, evidence of abrasive wear was found in the work done for this 
study.

Adhesive wear due to cold welds or hot welds forming within the 
tip is the other wear mechanism. After a cold or hot weld is formed, the 
feeder must have sufficient force to shear the weld between the contact 
tip and wire or failure due to lack of feeding occurs. Like welded joints, 
the weld may be stronger than the material around it causing the shear 
to occur in the copper metal or the wire around the weld [20,22].

Prior literature suggests non-copper coated electrodes wear the 
contact tip inner bore more aggressively. This is due to the greater 
resistance at the electrical junction and increase in hardness of the outer 
surface of the wire electrode. The most abrasion occurs at arc ignition, 
when the electrode is stationary, and there is high current flow required 
for striking an arc [20]. This higher current flow causes more ohmic 
heating, increasing the probability of a hot weld forming. When the 
wire begins feeding after an arc is struck, any hot or cold welds formed 
will be sheared. Reducing the arc ignition time from 61 ms to 16 ms 
was found to reduce the abrasion volume by approximately 40 %  [20]. 
Matsui et al. also found that for a given current, wear decreases as 
wire feed speed increases and suggests that conduction heat transfer 
is increased due to room temperature wire entering the contact tip.

As the contact tip wears, positional errors occur in the wire elec-
trode as well as potential contaminants such as copper and oxides being 
transferred to the melt pool [22]. In the case of traditional welding, 
positioning error can reduce the strength of a welded joint by up to 50 
percent [18]. Eventually, a worn contact tip will lead to catastrophic 
failure in the welding process. This can occur due to the feeder being 
unable to shear a weld between the electrode and contact tube or from 
an inability of the contact tip to properly transfer current resulting 
in an unstable arc and poor metal transfer [18,19]. With respect to 
WAAM, contact tip wear leads to the breakdown of process monitoring 
and control schemes. Reference current levels shift, which cause issues 
in any schemes that rely on this, such as a contact tip to work piece 
distance control loop.

Quinn et al. developed and proposed an algorithm to define a wear 
metric from welding signals to detect contact tip wear in process during 
GMAW [18,19]. They found that the integrand of the power spectral 
density of voltage in the low frequency regime (0.3 to 4 Hz) increased 
linearly with contact tip wear and then transitioned to non-linear 
erratic behavior at extreme wear levels. The low frequency variations 
in wire feed speed at the contact tip due to wear, leads to variations 
in the electrode extension and thus arc length which is reflected in the 
voltage. Failure criteria were defined as the wear metric exceeding a 
specified threshold or experiencing non-linear behavior [18,19]. Other 
than this method, the primary method for monitoring contact tips 
found in standard welding guidelines was developing a time-based 
maintenance log. With the growth of large-scale wire arc additive 
manufacturing, components require a high amount of arc time and 
weld bead length, and the wear of the contact tip should be addressed. 
Additionally, DED-arc studies often use materials that require uncoated 
1464
Table 1
Percent composition of ER316LSi wire from OEM.
 Element Fe Cr Ni Mn Mo Si C  
 ER-316LSi Bal 18.4 11.5 1.9 2.3 0.79–0.87 0.01 

Table 2
Experiment matrix.
 Trial Layers Arc time (min) Wire fed (m) 
 A1 1 3 30.5  
 A2 1 3 30.5  
 B1 1 6 62.3  
 C1 2 12 124.7  
 D1 3 18 187.0  
 E1 4 24 249.4  
 E2a 4 24 249.4  
 F1a 5 30 311.7  
 F2a 5 30 343  
Note
a Indicates trial was stopped due to contact tip failure prior to reaching target wire-fed.

feedstock such as tool steel, maraging steel, and other advanced alloys 
leading to more aggressive wear conditions than the more common 
copper coated welding filler wire. This study investigates contact tip 
wear in the context of DED-arc with a focus on understanding the 
wear condition of the contact tip with respect to wire fed, the affects 
of wear on the additive process, and process monitoring schemes to 
enable an evaluation of the wear state. The contact tip bore area was 
measured along the bore axis for the first time, in addition to measuring 
the change in area at the exit. Abrasive wear was observed not only 
on surface of contact tip, but also on the surface of deposited steel 
that was transferred to the contact tip. Process signal analysis was 
performed during the feature engineering step of the machine learning 
architecture, quantifying impact on key process metrics such as the 
linear energy density (energy per unit length of weld). This work 
culminated in development of a machine learning based scheme to 
provide predictions of the wear state from in process data.

2. Material and methods

2.1. Design of experiments and system configuration

The experiment set was designed to generate a set of contact tips 
worn to a pre-determined level as measured by the amount of wire 
fed or arc time, and to generate a sufficient amount of in-situ data 
for machine learning models. The material chosen was a an uncoated 
316LSi stainless steel wire electrode due to wide-spread use across 
various industries in addition to bare stainless steel wearing the contact 
tip more aggressively. The wire composition is presented in Table  1 
below.

A serpentine toolpath was selected to ensure a high amount of wire 
fed per layer and to reduce the number of arc ignition events. Experi-
ments consisted of a series of parts with toolpaths measuring from 30 to 
300 m of wire fed as shown in the experiment matrix in Table  2. Trials 
B1-F2 utilized a serpentine toolpath approximately 200 mm by 100 mm 
in area. While, trial A1 and A2 had smaller toolpath of approximately 
100 mm by 100 mm. The spacing between adjacent beads was 8.9 mm 
in all cases. Experiment A1 and A2 served the purpose of generating 
contact tips at 30 m of wire fed and the data from these experiments 
were not used in training models. Trial E2 experienced partial melting 
of the contact tip during arc extinguishment. Similarly, trials F1 and 
F2 had a target of 360 m of wire fed (eight layers) but the contact 
tip experienced failure at approximately 311.7 and 343 m respectively. 
The in-situ data from F1 and F2 was used in training models; however, 
the contact tips could not be used for ex-situ characterization.
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Table 3
Deposition parameters.
 Parameter  
 Mode Pulsed spray 
 Average voltage (V) 23  
 Average current (A) 250  
 Wire feed speed (m/min) 10.4  
 CTWD (mm) 12.7  
 Traverse speed (m/min) 0.76  
 Deposition rate (kg/h) 5.0  
 Dwell time (s) 180  

The welding and motion platform process parameters were held at 
constant set points during each experimental trial. Deposition process 
parameters are summarized in Table  3 below. It is worth noting that, 
the waveform controller was constantly running and adjusting the 
voltage, current, and wire feed speed during the current and voltage 
waveform. However, the internal waveform controls do not account for 
wear in the contact tip.

A retrofit WAAM system consisting of a 3-axis CNC machine and 
welding power supply was utilized for the depositions. A custom 
adapter holds the torch to the machine spindle shown in Fig.  1. A 
PowerWave S500 welder, and 4R220 wire feeder unit were used for the 
GMAW process. A Windows PC connected to the local machine network 
facilitated in-situ weld data acquisition with PowerWave Manager.

2.2. Contact tip wear characterization

Following depositions, the contact tips were characterized with 
scanning electron microscopy, optical profilometry and digital mi-
croscopy. Contact tips were sectioned at the center along the longitu-
dinal axis. To allow for repeated sectioning, each contact tip was held 
in a modified gas diffuser assembly with flat edges.

Each contact tip was scanned using a Keyence VR-6200 optical 
profilometer which operates using structured light scanning. Each scan 
consisted of a 7.6 mm by 5.7 mm region of interest yielding an XY 
lateral resolution of 2.468 μm and height resolution of 4.0 μm. Within 
the profilometer software, the reference plane was set to a best fit plane 
containing the areas around the bore. From the topographical scan, the 
bore area was computed along the length of the contact tip. A simple 
Python script traversed along the X-direction of each scan extracting 
Y-Z slices. To compute the area, each Y-Z slice was then numerically 
integrated with the Trapezoidal Rule, seen in Eq.  (1). 

∫

2.5

0.5
𝑍(𝑦)𝑑𝑦 ≈

𝑁
∑

𝑖=1

𝑍(𝑦𝑖−1) +𝑍(𝑦𝑖)
2

𝛥𝑦𝑖 (1)

The relative bore area at the exit of the contact tip was computed. 
A least squares linear regression was implemented to relate the amount 
of wire fed or sliding distance to the relative bore exit area.

2.3. Arc data aggregation

Following experimental trials, the data from each experiment was 
aggregated across experimental trials into an aggregate dataset. Prior 
to the experimental trials, test beads were deposited with the same 
depositions parameters to determine the pulse waveform frequency 
which was found to be 230 Hz. For each trial, welder power supply 
data was collected at 1200 Hz and during aggregation, the arc data 
(current and voltage) was low pass filtered to 600 Hz with a 10th 
order Butterworth filter to avoid aliasing. The start and end of each 
bead were removed due to transient characteristics of the arc ignition 
and arc extinguishment as well as the associated variation in bead 
height and thus contact tip to work piece distance [5]. Similarly, data 
from the corners of the toolpath were removed from the aggregate 
dataset due to height build up associated with machine deceleration 
and acceleration [23]. The aggregate dataset is summarized below in 
Table  4.
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Fig. 1. Torch and CNC Spindle.

Table 4
Summary of aggregate dataset.
 Wire fed (m) Time (min) Data points (106) 
 [0, 62.3] 53 1.9  
 [62.3, 124.7] 53 1.9  
 [124.7, 187.0] 44 1.6  
 [187.0, 249.4] 22 0.8  
 [249.4, 311.7] 11 0.4  
 Total 187 6.7  

2.4. Machine learning architecture

For both classification and regression, a set of features were gener-
ated from the filtered aggregate dataset. A moving window approach 
was taken with various window sizes to generate the feature space. 
Standard statistical features such as the four statistical moments (mean, 
standard deviation, kurtosis and skewness) were computed on the 
current, voltage, and wire feed speed. In addition, the peak and back-
ground current and voltage (from the pulsed waveform) were extracted. 
The more welding specific features were computed on the pulse wave-
form based on prior knowledge. The root mean square of the voltage 
signal in 0 to 10 Hz frequency band was used due to Quinn et al. 
finding a trend with wear [18]. Similarly, the RMS of the voltage signal 
about the pulse frequency (200 to 300 Hz) was computed as a feature. 
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Fig. 2. Digital images of control (factory new), A1, C1, and E1 contact tips.
To capture information about the current and voltage waveform, the 
time between maximum and minimum extrema of the waveform was 
measured and statistics on the spectrogram within the frequency band 
of the pulsed waveform. A complete list of features generated is listed in 
the appendix along. Formally the feature generation step is described in 
Eq.  (3). The filtered aggregate dataset, composed of the process signal 
data, is denoted as 3×𝑁 matrix, 𝑋, where 𝑁 indicates the total number 
of data-points collected. The feature matrix is denoted as 𝑋′, following 
the feature generation process, 𝑋′ is 𝑁∕𝑀 × 71 real-valued matrix 
where M represents the selected windowing size. 
𝑋 ∈ R3×𝑁 → 𝑋′ ∈ R71×𝑁∕𝑀 (2)

To perform classification, a random forest was utilized and discrete 
classes were defined to represent the state of the contact tip at the 
start of each layer and labeled with the relative bore area from the 
geometrical analysis regression. These classes corresponded to data 
collected during the first 15 m of wire fed in each layer as summarized 
in Table  5. If one were to implement the model live, one would 
receive an evaluation of the contact tip at the start of each layer and 
determine whether a replacement is needed. Model hyperparameters 
were tuned with an exhaustive grid search during which evaluation was 
performed with a 5-fold cross validation scheme. Evaluation metrics 
were the f1-score, the harmonic mean of accuracy and precision shown 
in Eq.  (2) [24]. To address the imbalance of the data set due to the 
nature of the design of experiments, synthetic minority oversampling 
technique (SMOTE) was implemented after the splitting of the data set 
for folds, and the train test split. Prior to hyperparameter tuning, the 
feature space was scaled to have zero mean and unit variance. Once 
hyperparameters were selected, final model training and evaluation 
were performed with 75% of the dataset reserved as a training dataset 
and 25% of dataset reserved as test dataset. 
𝑓1 = 2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

= 𝑇𝑃
𝑇𝑃 + 1

2 ∗ (𝐹𝑃 + 𝐹𝑁)
(3)

For regression, a similar approach was taken with a multi-layer 
perceptron also known as an artificial neural network. No bins were cre-
ated and the master dataset was continuously labeled with relative bore 
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Table 5
Summary of classes.
 Label (relative bore area) Wire fed bin (m) Data points (103) 
 0.96 [0, 15.2] 460  
 1.04 [62.3, 77.5] 460  
 1.14 [124.7, 139.9] 390  
 1.24 [187.0, 202.2] 190  
 1.35 [249.4, 264.6] 98  

area. An exhaustive grid search was implemented with coefficient of 
determination (𝑅2) function serving as the scoring function, described 
in Eq.  (4)

𝑅2 = 1 −
∑𝑀∕𝑁

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)2
∑𝑀∕𝑁

𝑖=1 (𝑦𝑖 − 𝑦̄)2
(4)

3. Results

The control and worn contact tips were characterized with a variety 
of methods, including a digital microscope, scanning electron micro-
scope, and optical profilometer. Samples digital images of contact tip 
A1, C1, and E1 are shown in Fig.  2. Contact Tip A1 had been used for 30 
m of wire fed and an arc time of approximately 3 min. The wear region 
is restricted to around a millimeter from the bore exit, with darkened 
regions from the welding fumes. A small pad of steel is also visible, 
this is likely from partial melting of the wire at arc extinguishment. 
Contact tip C1 was used for 124 m of wire fed ( 12 min of arc time) 
and one can observe the increase in length of the wear zone. The area 
of oxidized surfaces has grown, and there are more dispersed globules 
of solidified steel present in the wear region. Finally, contact tip E1 
was worn with approximately 24 min of arc time and 249 m of wire 
electrode. By inspection, one can observe not only the increase in length 
of the wear zone but also the increased width of the bore.
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Fig. 3. SEM Images of Bore Exit Region (E1). 
Fig. 4. Line spectrum data from stainless deposit on E1.
3.1. SEM/EDS analysis for material contamination

To confirm potential material contamination within the bore, por-
tions of contact tip E1 were imaged with a scanning electron mi-
croscope. Fig.  3 illustrates the exit region of the bore, which has a 
non-uniform surface, varying in color and texture. One can observe the 
height difference and damage to the surface in the form of roughness, 
pock marks, and scratches. Among the oxide surface layer, there are 
small globules of solidified metal and exposed surfaces.

To confirm the alloy composition and investigate the transition 
region, a line spectrum was also taken across one of the stainless 
deposits. Fig.  4 illustrates the spectrum data for the line with counts per 
1467
second for each metal element of interest (contact tip alloy and 316L 
alloy elements). In the region containing the deposit, around 70 to 180 
μm, there is significantly greater count of iron and chromium with a 
range of 50 to 150 counts. Additionally, other 316L alloying elements 
are present at a count less than 50 (Nickel, Molybdenum, Manganese, 
etc.). Due to these elements’ low concentration in 316L, there is less 
distinction in their counts between the steel deposit region and the 
bore surface region. An interesting observation is the peaks of copper 
throughout the 70 to 180 μm range of the steel deposit. This is likely 
due to the miscibility gap between copper and iron and indicates that 
melted copper was dispersed in the steel [25]. Liquid phase separation 
of copper and iron occurs because of the miscibility gap and the copper 
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Fig. 5. EDS Map of bore exit region of sample E1.

solidifies first. Subsequently, the steel cools and solidifies. This leads to 
the formation of copper globules or spherules which matches with the 
line spectrum data, as the peaks occur at edges or changes in the deposit 
profile.

Fig.  5 visualizes the energy dispersive spectroscopy map of the bore 
exit region. This map corroborates later observations made through 
visual inspection of the digital microscope images. One can also observe 
that the area of exposed copper surface has been reduced, with some 
small regions of higher copper concentration remaining. Evidence of 
small steel deposits are present in the map for iron with iron par-
ticles dispersed throughout the region, and small areas of high iron 
concentration indicating globules of steel.

To confirm abrasive wear, images were taken at 500X (left) and 
2000X (right) capturing wear tracks in Fig.  6. The top two images 
are centered on a portion of the contact tip that had an exposed 
CuCrZr surface. Parallel scratches are present indicative of abrasion 
from the steel wire or asperities. Further, the bottom image captured 
scratches on a previously deposited steel globule. The steel globule 
likely formed due partial melting at the wire interface with the contact 
tip or spatter traveling up the tube. Abrasive wear can be inferred 
from the uniformity in the top-surface as compared to the edges of 
the globule and other deposited globules. Small beads of copper are 
embedded in the edges of the globule indicating copper melting and 
precipitating out of solution as it solidifies.

3.2. Optical profilometry for material loss

From the topographical maps of each contact tip, the area of the 
bore region was computed with trapezoidal integration as detailed in 
2.4. Fig.  7 illustrates the bore area as a function of the position along 
the bore. The wear region is restricted to the last two millimeters, 
[10,12] on the 𝑋-axis, for the contact tip for A1 and B1. For C1, the 
wear region has grown to [6, 12] mm and for D1 and E1, the wear 
region comprises the entire scanned region [0, 12] mm. The geometric 
results indicate that the wear of D1, and E1 experiences wear further 
from the exit region. The wear in the [0, 6] millimeter range (further 
from the exit of the contact tip) is likely only mechanical in nature. 
This is supported by the lack of solidified steel and carbon further up 
the bore, observed in digital images.
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For comparison to prior literature, and for the machine learning 
architectures, the area at the exit was extracted from the bore area and 
position data. The relative exit area for each contact tip is illustrated 
in Fig.  8. A least squares linear regression was computed, and the line 
of best fit is shown. The error bars on each area datum represent the 
total uncertainty from the propagation of uncertainty during numerical 
integration. The area was found to increase linearly with the amount 
of wire fed. The maximum increase in area observed was 49 percent in 
contact C1. The enlargement of the bore will result in a shift in the wire 
position. By itself, the wire could be mispositioned by up to 0.5 mm at 
the contact tip exit. However, this position error could reach significant 
levels at the workpiece when considering sine error over the contact tip 
to workpiece distance.

3.3. Process signals analysis

To understand how the welding process is affected by the wear of 
the contact tip, the welding signals were analyzed with the statistical 
features generated, as well as the linear energy density. Linear energy 
density is a variable to measure heat input to the weld per unit length. 
The heat input and wire feed speed to traverse speed ratio are physical 
measures that affect the resultant weld bead geometry. Additionally, 
selected features were used to visualize changes to the welding process. 
Histograms of the selected features were generated from layer 1 and 
layer 4 data with fixed width bins for each variable. Fig.  9 illustrates 
the histograms with layer one in blue and layer four in green. The 
dashed lines in each histogram represent the 95% expectation bounds 
associated with three standard deviations of the data set. Comparing 
the histogram of linear energy density, the bounds grow from approx-
imately [430, 480] J/mm to [325, 575] J/mm. Similar observations 
can be made on the 95% intervals for each feature. In layer 1 the 
distribution of the WFS standard deviation of has very few instances 
beyond 2 ipm. By layer 4, there are many datums beyond 2 ipm, which 
is a signature of poor feeding.

3.4. Machine learning for classification

A random forest classifier (RFC) was utilized to classify the arc 
data into five distinct classes of wear, as described by the relative 
change in contact tip area. The feature space and bins for classes are 
described in Section 2.4. An exhaustive grid search was performed to 
tune the hyperparameters of the RFC. Two key hyperparameters are 
the minimum samples split, which described the minimum number of 
samples to split a node, and the max features, which describes the 
number of features selected at random when searching for a split. Fig. 
10 illustrates the results of a 5-fold cross validated grid search for the 
minimum samples split and max features hyperparameters, with the 
color gradient of each cell determined by the mean test score of that 
hyperparameter combination.

The F1-score described in Eq.  (3) was used as the scoring metric. As 
the minimum number of samples split increases, the performance of the 
classifier degrades slightly. The best value for minimum samples split 
was found to be two. Across the domain of max feature hyperparam-
eter, there is not a clear trend between the hyperparameter value and 
mean test score. However, the range of 12 to 24 gives favorable results 
at minimum samples split value of two. A value of 16 was chosen for 
the max features parameter due to the performance and to reduce the 
risk of overfitting a model.

Following hyperparameter tuning, the random forest classifier was 
evaluated with 5-fold cross validation at various window sizes. Window 
size refers to the number of data points used to compute a given 
feature datum. Increasing the window size increases the amount of 
time associated for each feature datum, which has an effect of greater 
smoothing in the time domain as increasing the observation window 
for wear-related phenomena in the arc data. Decreasing the window 
size increases the granularity in the data when viewed from the time 
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Fig. 6. Wear tracks present on copper and steel surfaces.
Fig. 7. Bore area as a function of X position along the bore.

domain;however, too small of a window may miss indicators of wear 
in the arc data and wire feed speed. A summary of the performance of 
the model for various window sizes is provided in Table  6. The smallest 
window size of 256 had the lowest F1-score, which is to be expected, as 
this data will contain a few pulse waveforms where the effects of wear 
may not be observed. With the window size increased to 512, the F1-
score improved to 0.81 ± 0.01. Beyond 1024, model improvements due 
to smoothing are reduced. The classifier performance exhibited maxi-
mum F1-score of 0.84 for window size of 1024. Given this, subsequent 
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Fig. 8. Relative bore exit area.

machine learning models were evaluated with a window size of 1024 
data points. A sample confusion matrix for N = 1024 is shown in Fig. 
11

To better understand which features are used by the classification 
model to make a prediction, the permutation-based feature importance 
was computed with the trained model. With permutation feature impor-
tance, a single feature is corrupted by randomly shuffling the feature 
column and the associated labels. Fig.  12 illustrated the feature impor-
tance as measured by the mean accuracy decrease in the model. For 
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Fig. 9. Histograms of selected features from Trial E1. 
Fig. 10. Hyperparameter tuning with N = 1024. 
Table 6
Window size study.
 Window size Window size (ms) Average f1-score Standard deviation 
 256 213 0.79 0.01  
 512 426 0.81 0.01  
 1024 853 0.84 0.01  
 1536 1280 0.82 0.02  
 2048 1706 0.82 0.03  

readability, the top ten features are shown. The permutation corruption 
of the standard deviation of the voltage reduced the model’s accuracy 
the greatest followed by the standard deviation of the wire feed speed.
1470
Fig. 11. Confusion matrix visualizing the classification of the data set with a window 
size of N = 1024.

3.5. Machine learning for regression

A multilayer perceptron or artificial neural network regressor was 
developed and evaluated in a similar manner to the classifier. Hyper-
parameter tuning results from a 5-fold CV grid search are presented 
in Fig.  13 below. Alpha, or the regularization parameter, was swept 
from a value of 1E−4 to 1E+3. Potential hidden layer sizes were 
chosen based on fractional amount of the sum of the input layers 
(number of features) and output layer (prediction of relative bore area), 
which is equivalent to 72. As alpha increases from 1E−4, the model 
performance generally improved across the selection of hidden layers. 
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Fig. 12. Permutation feature importance for RFC.
Fig. 13. MLP hyperparameter tuning.
This behavior reverses beyond an alpha of 0.1, with model performance 
dropping significantly beyond an alpha of 10. The architectures with 
two hidden layers tended to outperform a single hidden layer, with 
the best performance achieved with three hidden layers (250, 144, 
72). Larger neural network architectures beyond this were avoided to 
reduce the potential to over-fit the modal.

The MLP regressor was trained and evaluated with an alpha of 0.01, 
a single output layer, and three hidden layers of 250, 144 and 72 
neurons resulting in an 𝑅2 score of 0.75. Fig.  14 provides an overview 
of the model performance on a 10 percent random sample of the test 
data set. The MLP regressor tends to shows a favorable balance of over 
and under-prediction for a significant portion of the predicted domain. 
This behavior is diminished beyond a value of 1.2 and the model 
shifts to over-predicting, similar to the transition seen in random forest 
classifier confusion. This transition is less pronounced with the MLP 
predicting fewer extreme outliers likely due to the similar predictive 
features being present across continuous wear values as opposed to 
discrete bins to classify.
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Fig.  15 visualizes the permutation feature importance for the multi-
layer perceptron regressor model. Voltage based features dominate the 
models resultant predictions with the standard deviation of the voltage 
and the mean background voltage. Physically, the background voltage 
corresponds to the voltage during the short portion of the waveform, 
when the electrode and workpiece are shorted through the droplet. 
Interestingly, permutation of the mean background voltage period or 
time between shorts, reduced the 𝑅2 score by ≈0.35. Other features of 
significance for the model include the kurtosis and skew of the voltage 
signal as well as the mean period of the peaks in the voltage waveform.

4. Discussion

4.1. Model performance

From the process signals to the results of the machine learning 
models, insights about potential detriments of contact tip wear and the 
appropriate features to compute for monitoring wear are gained. The 
random forest classifier shows better performance than the regression 
model which is likely due to less than thermal biasing of the arc signals 
and simplifying the problem of predicting wear into classification. With 
a classification-based approach, an upper limit on the bore wear would 
be chosen and the model could be implemented as a go/no-go check at 
the start of each layer. This would provide an evaluation of the current 
state of the contact tip and allow an operator to quickly determine if it 
should be changed. The top three important features, as computed with 
permutation feature importance are the standard deviation of each data 
stream and the standard deviation of the peak voltage.

The performance of the regression model could likely be improved 
by further examination of the frequency domain. From the layer 4 
histograms of selected features, Fig.  9, one can observe a bimodal 
distribution indicating that the arc behavior is shifting between stable 
and unstable behavior when in a worn state. Such alternating behavior 
may explain why discrete classifiers can sometimes outperform con-
tinuous regression models for certain wear states. With the bimodal 
distribution, some of the feature windows will appear stable and similar 
in value to layer 1’s distribution. Increasing the window size may 
provide more smoothing at the cost of reducing potential signatures of 
wear in the arc signal. This effect was observed in the classification 
model where the performance increased less as the window size in-
creased. From Fig.  15, the most critical feature for this particular model 



Journal of Manufacturing Processes 141 (2025) 1463–1474Z. Hussein et al.
Fig. 14. MLP Performance visualized with a 10% random sample. (a) actual relative bore area against relative bore area (b) residuals compared against predicted values.
Fig. 15. Permutation based feature importance as measured by the mean 𝑅2 score decrease with the MLP regressor.

is the standard deviation of the voltage, followed by other voltage 
based features. This is contrasted by the classifier, where standard 
deviation of the voltage was still the highest ranked feature; however, 
it was followed by wire feed speed standard deviation, current standard 
deviation and the standard deviation of the peak voltage. This pattern 
suggests that classifiers benefit from diverse feature combinations to 
establish class boundaries, while regression models may rely more 
heavily on features that vary continuously with wear progression, 
particularly those related to the short-circuit phase. The MLP regressor 
appears to better fit data across the domain without overfitting in 
the portions of the predicted domain. This likely leads to the model 
performing more reliably than the RFC. Given the characteristics of 
each model’s predictions, the MLP regressor displays a balance of 
favorable traits with over prediction, a relatively fast training time, 
and few signs of overfitting. Both models demonstrate some robustness 
and the ability to make appropriate predictions even if one data stream 
becomes corrupted, which represents an important consideration when 
evaluating potential industrial implementations where sensor reliability 
may vary.

4.2. Contact tip characterization

The physical signs of wear on the contact tip suggest that the 
variation in voltage is likely due to poor feeding and wire adhesion 
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within the contact tip. The wire feed speed is reported at the roller, 
while any changes in the wire feed speed at the torch will result in 
variations in the voltage as the electrical stick out changes. Quinn et al. 
observed that there is a discrepancy between the wire feed speed at the 
roller and at the exit of the torch [19]. This is likely why wire feed 
speed features were less important for the models presented.

SEM and EDS analyses revealed both abrasive and adhesive wear 
mechanisms operating simultaneously. The observed parallel scratches 
in Fig.  6 provide evidence of abrasive wear from the steel wire sliding 
against the copper surface. Meanwhile, the solidified steel globules, 
especially near the exit region, indicate adhesive wear facilitated by 
localized heating, aligning with Matsui et al.’s findings [20]. Wear 
progression patterns suggest a shift in dominant mechanisms over 
time. In early stages (e.g., contact tip A1 with 30 m of wire fed), 
mechanical wear dominates and remains localized near the exit. As 
wire feed increases, thermal effects become more significant, evidenced 
by increased steel deposits and copper-iron interactions seen in the line 
spectrum data (Fig.  4). The miscibility gap between copper and iron 
noted by Curiotto et al. [25] creates conditions where melted copper 
disperses within steel deposits, potentially creating a cycle of adhesion 
and abrasion that accelerates wear. The wear closer to the exit region 
is likely electro-mechanical in nature, with the adhesive/abrasive wear 
mechanism as described in Section 1. This is supported by indicators 
of melting and solidification and greater material contamination near 
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the exit. Additionally, the increase in length of the wear zone indicates 
that the electrical junction or point of current transfer shifts along 
the longitudinal axis of the bore. As the bore cross-section becomes 
enlarged, the point of contact may shift. This would also shift the 
effective electrical stick out and associated resistance. Overall, the 
geometrical wear results are similar to prior results in the literature 
that found a linear relationship between wire feed and material loss or 
bore enlargement [20,21].

Quinn et al. utilized the PSD of the voltage in the low frequency 
regime as well as the RMS, which they theorized would capture changes 
in the electrical stick out due to wear. In this study, the low frequency 
RMS was found to be less important than the RMS in the pulse fre-
quency for each model’s prediction. This may be due to the much 
higher pulse frequency used in the waveform of the welding power 
supply as compared to prior studies. Additionally, from the process 
signal analysis the wear of the contact tip changes both the linear 
energy density and increases the variation in the wire feed speed. 
Both of these factors will compound to directly change the weld bead 
geometry. Linear energy density, a measure of heat input, affects the 
width and height of the weld bead and the wire feed speed is tied to 
the mass flow rate or material input into the melt pool [4,26].

The prominence of mean background voltage and mean period of 
the background voltage (time between shorts) in feature importance 
suggests specific mechanisms linking contact tip wear to welding pro-
cess stability. As the bore enlarges, the electrical contact between 
wire and tip becomes less consistent, potentially creating variations 
in the short-circuit phase of metal transfer that manifest in the back-
ground voltage signal. These variations appear particularly sensitive 
to wear state, making them valuable diagnostic indicators. The pulsed 
waveform (230 Hz) likely influences wear progression differently than 
constant current or constant voltage processes would. Peak current 
phases may accelerate adhesive wear through increased heating, while 
background current periods allow cooling and solidification of melted 
material. This thermal cycling could explain the observed pattern of 
discrete steel globules rather than continuous deposits. The importance 
of temporal features like the mean period of voltage peaks supports 
this interpretation, suggesting that wear affects both the magnitude and 
timing of metal transfer processes.

5. Conclusion

This research investigated contact tip wear in the context of wire-arc 
additive manufacturing or DED-arc, providing the first comprehensive 
characterization of both geometrical wear and material contamination 
along the entire bore length. This work focuses on a critical consumable 
component in the welding circuit which should be monitored in large-
scale depositions to ensure quality outcomes. A novel framework was 
developed to assess the wear state of the contact tip utilizing in-
process arc data collected from a welding power supply during the 
DED-arc process, eliminating the need for additional sensors or process 
interruption. Evidence of abrasive and adhesive wear mechanisms were 
found in this study, with the first documented observation of wear 
tracks present in both the copper surface and steel globules that were 
deposited in the bore. Material contamination due to adhesive wear 
and spatter travel were characterized with EDS, revealing a complex 
interaction between the copper contact tip material and steel deposits, 
including evidence of liquid phase separation during solidification.

Statistical changes in key process indicators such as linear energy 
density, wire feed speed, and the current and voltage demonstrated the 
impact of wear on process stability. A random forest classifier achieved 
a cross-validated f1-score of 0.84 for discrete wear states, while a 
multi-layer perceptron regressor demonstrated an 𝑅2 score of 0.75 
for continuous prediction of bore enlargement. These models could 
be deployed in industrial settings through integration with existing 
welding power supplies, providing real-time evaluation of contact tip 
condition at the start of each layer. Such capability would enable 
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automated maintenance scheduling and prevent quality issues before 
in the deposited material. For manufacturers, this translates to reduced 
material waste, improved process reliability, and better documentation 
of consumable life cycles.

Most significantly, this work establishes a foundation for transform-
ing contact tip wear from an unpredictable failure mode into a mon-
itored and managed process variable. By leveraging readily available 
electrical signals through appropriate feature extraction and machine 
learning techniques, depositions systems can implement real-time mon-
itoring without additional sensors or equipment. Future development 
of this approach should focus on validating the models across broader 
material combinations and process parameters, with particular empha-
sis on integrating wear monitoring into closed-loop control systems to 
compensate for the affect of wear on arc signals.
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Appendix. List of features

A full list of features are listed in Tables  A.7–A.9.

Table A.7
Current-based features.
 Current features  
 Mean current  
 Maximum current  
 Minimum current  
 Maximum minus minimum current  
 Mean sum of squares  
 Counts of values above mean  
 Standard deviation  
 Kurtosis current  
 Skewness current  
 Mean peak current  
 Standard deviation peak current  
 Kurtosis peak current  
 Skewness peak current  
 Mean background current  
 Standard deviation background current  
 Kurtosis background current  
 Skewness background current  
 Mean peak minus mean background current 
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Table A.8
Voltage-based features.
 Voltage features  
 Mean voltage  
 Maximum voltage  
 Minimum voltage  
 Maximum minus minimum voltage  
 Mean sum of squares  
 Counts of values above mean  
 Standard deviation  
 Kurtosis voltage  
 Skewness voltage  
 Mean peak voltage  
 Standard deviation peak voltage  
 Kurtosis peak voltage  
 Skewness peak voltage  
 Mean background voltage  
 Standard deviation background voltage  
 Kurtosis background voltage  
 Skewness background voltage  
 Mean peak minus mean background voltage 

Table A.9
Additional features.
 Additional features  
 Mean wire feed speed  
 Standard deviation wire feed speed  
 Kurtosis wire feed speed  
 Skewness wire feed speed  
 Mean resistance  
 Mean peak resistance  
 Mean background Resistance  
 Mean peak minus mean background resistance 
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