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Data-Driven Approaches for Bead
Geometry Prediction Via Melt
Pool Monitoring
In the realm of additive manufacturing, the selection of process parameters to avoid over
and under deposition entails a time-consuming and resource-intensive trial-and-error
approach. Given the distinct characteristics of each part geometry, there is a pressing
need for advancing real-time process monitoring and control to ensure consistent and reli-
able part dimensional accuracy. This research shows that support vector regression (SVR)
and convolutional neural network (CNN) models offer a promising solution for real-time
process control due to the models’ abilities to recognize complex, non-linear patterns
with high accuracy. A novel experiment was designed to compare the performance of
SVR and CNN models to indirectly detect bead height from a coaxial image of a melt
pool from a single-layer, single bead build. The study showed that both SVR and CNN
models trained on melt pool data collected from a coaxial optical camera can accurately
predict the bead height with a mean absolute percentage error of 3.67% and 3.68%, respec-
tively. [DOI: 10.1115/1.4062800]

Keywords: additive manufacturing, advanced materials and processing, computer-
integrated manufacturing, sensing, monitoring, and diagnostics

1 Introduction
Additive manufacturing (AM) refers to a manufacturing pro-

cess that utilizes 3D models to create parts by joining materials

together layer-by-layer [1]. Directed energy deposition (DED) is a
specialized form of metal AM process where a laser and metal
powder intersect to generate a molten metal pool, known as a
melt pool, on a substrate. This pool cools and solidifies to form a
continuous metal track. This process is repeated layer-by-layer to
create a final part. DED stands out among other metal (AM) pro-
cesses due to its unique ability to manufacture sizable workpieces,
contract near net shapes, and effectively repair existing parts and
castings [2–4]. In addition, DED can be utilized for the
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development of advanced materials such as graded materials [5],
which enables the combination of metal powders to be used in a
single part at different locations for optimized design. Therefore,
AM technologies introduce substantial innovation to the field of
manufacturing. Compared to traditional subtractive manufacturing,
AM allows for unrivaled flexible design [6]. Regardless of the
aforementioned benefits of DED, the industry-wide adoption of
this process depends upon improvements in process monitoring
and control due to unreliable part quality. In particular, subtle
changes in the operating parameters can cause poor part quality
due to the high sensitivity of the laser [7]. By utilizing a feedback-
based approach, the laser can be dynamically adjusted to minimize
process fluctuations without needing to refer to a particular, previ-
ously tested geometry and deposition history. Non-contact instru-
ments have gained widespread popularity in similar applications
due to their capability to gather information at a safe distance
from the heat generated during the deposition process. Sensor
damage can easily occur due to the high temperatures from the
laser which cause high melting temperatures, high power laser
light reflections, and spatter. When taking into account cost and
ease of integration, beam-coaxial melt pool monitoring with a
visible-light camera remains a practical and cost-effective solution.
This is because many deposition heads for DED are equipped with a
port for including a monitoring camera into the optical chain [8]. As
a result, this work aims to create a vision-based setup that can locate
anomalies in bead height indirectly via the energy content of the
melt pool, allowing for the prediction and correction of potential
deviations from the planned deposition result. In order to anticipate
variations in track geometry, an investigation was conducted into
the application of machine learning (ML) algorithms, specifically
support vector regression (SVR) and convolutional neural networks
(CNNs) for regression. Furthermore, a data collection and labeling
pipeline was established to streamline the data preparation process.
The developed models were then assessed for their feasibility to be
integrated onto an edge device, facilitating closed-loop or feed-
forward control of the machine.

2 Background
A literature review was conducted to understand the current and

previous solutions regarding DED bead geometry monitoring and
control. This section discusses the literature review finding and cat-
egorizes them by monitoring method.

2.1 Coaxial Optical Monitoring Systems. The study
described in this paper utilized a coaxial optical camera for data
acquisition. Coaxial monitoring systems offer a cost-effective and
convenient solution for monitoring the melt pool, as they can be
easily integrated into the existing architecture of laser-based AM
machines. Moreover, the camera sensors are positioned at a safe dis-
tance from laser reflections and high process temperatures. This not
only ensures the protection of the monitoring equipment but also
enables contact-less and precise measurements for real-time
control without interrupting the process or waiting for the deposi-
tion to cool. In the specific configuration used, the camera captures
the back reflection of the melt pool using a mirror in the coaxial
setup. Alternatively, off-axis camera positioning can be combined
with a dichroitic mirror to align the image sensors with the reflected
melt pool image. Coaxial monitoring configurations are primarily
employed for direct measurements of melt pool diameter, plume
behavior, and thermal conditions.

2.2 Additional Vision-Based Monitoring Systems. As a sub-
stitute to coaxial optical monitoring systems, Song and Mazumder
[9] propose an in-axis pyrometer for the indirect measurement of
layer height. Song and Mazumder suggested this approach
because it was observed that when the laser power was out of
focus, the energy density was lower, and, as a result, the pyrometers
temperature reading was reduced. Among the papers reviewed,

Ref. [9] is one of the few that suggested the utilization of indirect
measurement through melt pool monitoring. If the camera fails to
capture an overhead image of the melt pool, it was categorized as
off-axial. Frequently, cameras were positioned at 45 deg from the
build surface to measure melt pool plume, powder capture effi-
ciency [10], and spatter [11]. To measure layer height, cameras
were positioned either “in-line” or 90 deg from the laser axis. Jiao
et al. also suggested the use of off-axial cameras for indirect mea-
surement of weld penetration depth [12]. Jiao et al. were able to
show that with only a top view of the weld bead, deep learning
could be used to accurately predict weld penetration depth. In addi-
tion, camera triangulation offered an alternative approach to melt
pool monitoring. This technique involved the positioning of three
cameras to capture a comprehensive three-dimensional perspective
of the target process. For instance, Donadello et al. employed trian-
gulation to estimate parameters such as powder catchment effi-
ciency and layer height [13]. Although optical triangulation is
considered a useful tool for analyzing processes, it can be too inter-
fering to be practical for application in a production environment
due to the need for multiple cameras and increased calibration
time. Lastly, a triangulation setup can limit machine capabilities
due to the size of the monitoring setup.

2.3 Alternative Monitoring Systems. Upon reviewing the
existing literature, vision-based methods were by far the most
common monitoring systems for melt pool control and layer geom-
etry prediction; however, vision-alternative methods for melt pool
monitoring include multi-modal sensing, in-machine probing, and
3D scanning. Multi-modal sensing is a method to combine image
sensing with other types of sensors. For example, Jamnikar et al.
used multi-modal sensing to create a ML model to establish a
mapping between melt pool image and temperature to geometric
shape and micro-structural properties [14]. Moreover, this multi-
modal network required inputs from both images and temperature
measurements to train the algorithm. This method proved success-
ful for in situ, real-time quality control; however, the setup required
for multi-modal sensing can be time intensive and potentially inva-
sive. Another alternative to controlling layer height was physically
measuring it. Many DED machines are equipped with in-machine
probes which can be programed to measure the part in between
layers. For example, in a study conducted by Kono et al., it was
shown that updating the layer height command through in-machine
probing between deposition layers can significantly improve
process efficiency [15]. However, it should be noted that
in-machine probing cannot provide real-time updates to the layer
height command due to the need for material cooling before
surface measurement can take place, thus, extending the overall
manufacturing time. An alternative method of measuring part

Table 1 Review of approaches to predict DED bead height

Method References

Empirically based coaxial monitoring system [6,15,17]
Adaptive slicing [18]
Lumped-parameter modeling [19,20]
Finite element analysis [21]
Analytically based coaxial triangulation monitoring and
mass measurement system

[22]

Feedback-based coaxial monitoring system [8,23–25]
Feedback-based coaxial and off-axial monitoring system [10]
Feedback-based off-axial monitoring system [26]
Feedback-based coaxial and triangulation monitoring system [27]
In-machine probing [15]
Structured laser light scanning [16]
ML-based coaxial monitoring system [14,28–31]
ML-based off-axial monitoring system [12,32]
Multi-modal sensing [33]
Destructive evaluation [34,35]
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geometry is structured 3D imaging [16], however, these methods
are also not compatible with real-time control frameworks.

2.4 Review of Approaches to Predict Directed Energy
Deposition Bead Height. Previously, there have been a wide
variety of approaches to modeling and predicting bead height for
DED using the different monitoring configurations discussed
above. In this section, a brief overview of the strengths and weak-
nesses of the different approaches is presented and discussed.
Table 1 outlines these approaches.
Approaches that seek to understand how process parameters

change an outcome via experimentation are first discussed. For
instance, Ocylok et al. used a coaxial camera to monitor the effect
that varied process parameters has on melt pool geometry. Ocylock
et al. found that laser power would be the best correcting variable
for melt pool geometry control [36]. Moreover, Shim et al. used
empirical methods to determine the layer height command [18] by
creating an adaptive slicing strategy. This strategy was selected
by a process diagram that displayed a single-layer height correspond-
ing to the specific energy density of two combined parameters.
Using this diagram, the part was then sliced based on the layer-
specific depositing condition. A comparative analysiswas conducted
between this method, a closed-loop control method, and a conven-
tional method (constant slicing thickness irrespective of process
parameters). The comparative analysis was used to assess the perfor-
mance of each method in terms of limiting over or under deposition
during the build. Although closed-loop control was superior for geo-
metric accuracy, the material properties were improved when using
the adaptive slicing method. However, this method of open-loop
control proposed by the adaptive slicing was only practical when
the application was fixed and repeated over and over because identi-
fying the right parameters required several combinations of experi-
ments. Regrettably, empirical methods cannot be readily applied to
different materials, part geometries, and machines without the need
to repeat the experiments conducted to establish the original
model. This process can consume significant resources and time.
Another set of approaches employed techniques that predict out-

comes by utilizing equations that represent the underlying physics
of the modeled situation. For example, finite element (FE) models
are considered a physics-based model. However, FE models often
use partial differential or difference equations, which due to their
non-linear, time-dependent mathematical problem formulation
often makes them challenging to implement for fine, real-time
control. Utilizing physics-based lumped-parameter models and
assumptions, on the other hand, are more control-friendly, but
cannot predict part height as effectively [19,21]. At present, achiev-
ing accurate and rapid prediction of the entire AM process through
physics-driven methods is not feasible.
Other studies created mathematical models that had a closed form

solution. For instance, Donadello et al. created an analytical model
to relate the powder catchment efficiency to the variation in process
parameters as well as deposition height [22]. To evaluate the accu-
racy of the analytical model, a comprehensive experimental setup
was necessary. The experimental setup consisted of a mass mea-
surement system that monitored the quantity of powder deposited
and the portion that was captured by the melt pool. Additionally,
a coaxial optical triangulator was used to monitor layer height.
The study showed that this model is feasible for an open-loop
process optimization, due to its ability to accurately predict the
deposition growth. Analytical models can demonstrate high effec-
tiveness when applied to well-understood processes. However,
they are not as effective as other methods in addressing process
instability or irregular boundary conditions.
Among the various approaches, feedback-based methods were

the most widely adopted for monitoring and control of the melt
pool and layer height. The feedback-based approaches interpreted
data from sensors and used statistically determined thresholds to
determine how the machine should react. Feedback-based control
is often categorized to be either fine or coarse. For instance, fine

feedback control is typically used for real-time correction of
process anomalies that can be measured in situ like melt pool tem-
perature and geometry. Baraldo et al. demonstrated fine feedback
control [8]. Baraldo et al. demonstrated how the image intensity
from a thermal camera could be utilized to limit over-deposition
on geometries, specifically, with small-angled corners. In contrast,
coarse feedback is characterized by stopping the deposition and
then correcting unfavorable process deviations in the next layer.
In Garmendia et al. coarse feedback control was used to monitor
build height between layers with a structured light 3D scanner.
Based on the point cloud generated, the build path was corrected
by either deleting or adding layers for improved control of final
part geometry [16]. Another case of coarse feedback control utilized
in-machine probing.
Lastly, ML-based approaches, also known as data-driven models,

can be used to model and predict bead geometry. The significant
advantage of this type of model lies in its ability to bypass the
need for constructing an extensive list of physics-based equations.
Instead, these models autonomously learn the correlation between
input features and output targets through prior data. [35]. For
example, ML models were used to detect geometric distortion
using thermal history and provide feedback to rectify the issue in
a computer aided design (CAD) model. Specifically for laser
powder bed fusion, Francis et al. used a CNN to identify geometric
distortion by analyzing thermal history and offer feedback to rectify
the problem within a CAD model. Additionally, Zhang et al. uti-
lized a CNN to monitor the melt pool, plume, and spatter [32].
Jamnikar et al. used multi-modal ML models, including a
CNN-based model, that are trained on data collected from pyrome-
ters, optical cameras, and acoustic sensors to predict bead geometry
for a laser wire-feed DED system [14]. A few benefits of CNNs for
process monitoring include: (1) high accuracy for quality identifica-
tion, (2) no feature extraction step, and (3) great potential for real-
time applications. Additionally, a benefit of using SVR is the
model’s quick training and inference time as well as strong ability
to model non-linear relationships.
A shortcoming of both CNN and SVR models is the need for

extensive amounts of data to train the model. In this regard, past
work has not addressed the efficacy of edge compute compatible,
lightweight models for inference of layer height in DED. In the
present study, we are the first to have utilized melt pool data from
a single, coaxial optical camera to train a CNN and SVR to
predict DED bead height. Figure 1 displays the in situ coaxial mon-
itoring that was used in this work. The impact of model size on clas-
sification performance was evaluated and implications for
edge-based process control are discussed. Additionally, this paper
provides novel insight and thorough exploration into the features
that can be extracted from the image of the melt pool. This work
is the first to explore using the reflection of the melt pool on the
nozzle to indirectly infer layer height. Lastly, this paper also
answers how those features can be used to improve model perfor-
mance while minimizing model size and image processing time.

3 Methodology
In Sec. 3.1, the design of experiment is discussed. In Sec. 3.2, the

methodology for data collection is outlined. Lastly, in Sec. 3.3, the
model selection, architecture, and training are presented.

3.1 Design of Experiment. An Okuma MU-8000V LASER
EX at Oak Ridge National Laboratory (ORNL) was the DED AM
machine used to perform the experiments to collect training data
for the ML algorithms. The MU-8000V LASER EX is hybrid
manufacturing machine with an OSP-P300M controller. It has the
capability of a computer numerical control (CNC) machine but it
also has laser metal deposition abilities. This machine was equipped
with a Kappa CF 8/5 MX monochrome camera with 12-bit digital
signal processing and a MXC 200 controller. This camera had a
frame rate of 30 fps and was mounted to the side of the deposition
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head so that a set of mirrors could be used to view the melt pool in a
coaxial manner. The camera was outfitted with a 1/2 in interline
transfer charge-coupled device sensor with an area of 6.4 ×
4.8mm (752 × 582 pixels). To gather a training set for predicting
layer height, a series of single-layer, single bead tracks were
printed while varying the laser power. Laser power was selected
as the independent variable for manipulation, as previous research
has indicated that it exerts the most significant influence on layer
height among all process parameters [36]. Throughout the experi-
ments, all process parameters were maintained at a constant level
while varying the laser power. Table 2 displays the process param-
eters used for the experiment. To capture potential deposition con-
ditions, a large range of laser powers from 250 W up to 2500 W
were tested. A hot-rolled steel plate 304.8 mm× 304.8 mm×
38.1 mm in size was used as the substrate for the deposition. The
substrate print surface was machined flat before material deposition.
Stainless steel (316L-D) powder from Oerlikon with a spheroidal
morphology and nominal size range of 106+ /− 45 μm was used.
Custom G-code was created to increase or decrease laser power lin-
early with 23 mm between each programed laser power along a
single-layer bead. Regions 7 mm long at the start and end of each
track were not included in the analysis as these were found to
exhibit clearly variable intensity and shape. A diagram of the
process is shown in Fig. 2. The deposition began near the part
origin in the lower left-hand corner of the plate as displayed in
Fig. 2. As seen in Fig. 2, the laser power was increased from 250
to 2500 W. Once 2500 W was reached, it was decreased back to
250 W; this pattern was repeated over ten tracks. Researchers at
ORNL conducted thorough material testing under various process-
ing parameters and determined that a laser power of 2000 W was
the recommended setting for this particular machine. Specifically,
anything above 2000 W was found to result in cracking, whereas
anything under 2000 W had porosity issues. To mitigate the

influence of substrate temperature on bead geometry, the hot
deposition head was temporarily relocated to a resting position
away from the plate for approximately 3 min between each track.
This allowed the plate to cool down during the time between depo-
sitions. Moreover, to minimize the effect of substrate temperature
and location on bead geometry, the laser powers were repeated at
different locations and in decreasing/increasing direction on the
plate. A summary of the deposition path is outlined in Fig. 2 with
a dashed line. Overall, the experiment was completed within 2 h.
Delamination occurred at laser powers below 600 W because the
laser did not have adequate power to create sufficient melt pool pen-
etration into the substrate. To measure the geometry of the single-
layer bead, a FARO Quantum Scan Arm with a certified resolution
of 0.025 mm was employed at ORNL. The structured laser light
scan of the plate conducted at ORNL was evaluated using GOM

INSPECT, a software capable of assessing the dimensional accuracy
of 3D-inspected parts. The mesh generated from the scan was com-
pared to a CAD substrate that exhibited dimensional perfection.
Figure 3 shows the geometric differences from the ideal, deposition-
free substrate compared to the scanned mesh from the laser power
experiment.

3.2 Data Collection and Processing. One significant limita-
tion of supervised ML is the requirement for substantial amounts
of labeled data. The process of labeling data can be costly and time-
consuming. In response, a data pipeline was created for semi-
automated data labeling. To label images based on layer height, it
is essential to measure and record the layer height at various loca-
tions on the depositions in a manner that allows them to be linked
to specific images of the melt pool. Performing this task manually
would be time-consuming and could introduce significant human
error depending on the chosen measurement technique. Thus, a soft-
ware solution was developed to streamline the process. This soft-
ware required only to input the .STL file from the structured laser
light scanner and a .CSV file that contained the distance and
number of plate cross sections to be analyzed. The computer
program worked by slicing the experimental build with a distance
between cross sections that corresponds to the rate at which the
optical camera was able to capture a frame which was calculated
to be 3.6 f/mm. Figure 4 shows an example of a slice corresponding
to the cross section of a single bead. As can be seen in Fig. 2, 7 mm
at the beginning and end of each bead was excluded from the dataset
as the laser has not fully stabilized since being turned on/off. The
height and width of each bead were found by fitting a second
degree polynomial to the melt pool point cloud as can be seen in
the example in Fig. 4. The width of each bead was found by
finding the roots of where the average plate surface from a specific

Fig. 1 Diagram of in situ coaxial monitoring of melt pool

Table 2 Experimental process parameters

Process parameter Value

Laser power 250–2500 W
Traverse speed 500 mm/min
Laser spot size 3.5 mm
Laser wavelength 1067 nm
Nozzle gas 15 L/min
Carrier gas 4 L/min
Powder mass flow 12 g/min
Standoff distance 12 mm
Run time 12 h
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slice intersected with the second degree polynomial fit to the point
cloud data that were determined to be in the melt pool. Overall,
7702 images were collected within tracks 1–10. Figure 5 displays
a distribution of the height and width data collected. Additionally,
the point cloud data from the experiment were also inspected
using GOM INSPECT. The plate and the mesh generated from the
scan were found to accurately represent the reality, as confirmed
by a dial indicator.
In addition to the height and width data extracted from the point

cloud, features extracted from each image were analyzed. Specifi-
cally, the melt pool and melt pool reflection of each image were ana-
lyzed to see if any extracted features correlated to final bead

geometry. Table 3 displays the melt pool and melt pool reflection
geometry extracted from each image for analysis. For the analysis
displayed in Table 3, the melt pool was determined by binarizing
the grayscale image with a threshold value of 180. An ellipse was
then fit to the contour of the melt pool using a least-squares
approach. An example of a fit ellipse with the first five features
labeled is shown in Fig. 6(a). In addition, a rectangle was fit to
the melt pool as can be seen in Fig. 6(b). For the melt pool reflec-
tion, two ellipses were fit as displayed in Fig. 6(c). One ellipse
was fit to the inside, and another was fit to the outside. For each
ellipse, the accuracy of the fit was included as a feature by calculat-
ing the root mean squared error between the fit ellipse and the melt
pool contour. The error at each contour point was determined by
drawing a line that passes through the ellipse center and the
contour point. The error was the distance along that line between
the ellipse and the contour.
In addition to analyzing the size and orientation of the melt pool

and melt pool reflection, the texture of each image was analyzed in
an attempt to capture information regarding the plume and spatter of
the melt pool by calculating the statistical moments of the intensity
histogram of each image. Specifically, the mean or average intensity
(m), standard deviation or average contrast (σ), smoothness (R),
third moment (μ3), uniformity (U), and entropy (E) of each image
were calculated. In order to calculate the statistical moments of
the intensity histogram, let z be a random variable denoting intensity
and let p(zi), i= 0, 1, 2, …, L− 1, be the corresponding normalized
histogram components, where L is the number of distinct intensity
levels. Equation (1) shows how to calculate the mean of an intensity
histogram.

m =
∑L−1

i=0

zip(zi) (1)

Equation (2) displays how to calculate the standard deviation or
average contrast of an intensity histogram where Eq. (3) shows

Fig. 2 Diagram of depositions from experiment

Fig. 3 Experiment after deposition and corresponding section
of scanned geometry
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how to calculate the nth moment of z about the mean.

σ =
���
μ2

√
(2)

The third moment quantifies the skewness of a histogram, indicat-
ing its asymmetry. A value of 0 for the third moment suggests a
symmetric histogram, while positive values indicate a right-
skewed histogram, and negative values indicate a left-skewed his-
togram.

μn(z) =
∑L−1

i=0

(zi − m)np(zi) (3)

Equation (4) was used to calculate the smoothness of an image.
Smoothness is a measure of the relative smoothness of intensity
within a region. A smoothness value of 0 indicates that the
region of interest possesses a constant intensity. As the smooth-
ness value (R) approaches 1, it indicates that the region of interest
exhibits a wide range of intensity values with a chaotic distribu-
tion.

R = 1 − 1/(1 + σ2) (4)

Uniformity is expressed with Eq. (5). When all intensity values are
the same, uniformity is maximum. Uniformity decreases from the
maximum value as intensity values deviate from each other.

U =
∑L−1

i=0

p2(zi) (5)

Lastly, Eq. (6) was used to calculate entropy. Entropy in an image
is a measure of randomness.

E = −
∑L−1

i=0

p(zi) log2 p(zi) (6)

In addition to the statistical moments of the intensity histogram, a
measure called spatter (S) captures the pixels above a threshold of
180 outside of the melt pool and inside the reflection in an effort
to capture the amount of spatter in an image.

3.3 Model Fitting, Evaluation, and Architecture. For mod-
eling the final bead height, two models were explored. The first
model explored was a CNN. A CNN was chosen due to its ability
to model complex, non-linear data as well as its ability to perform
automatic feature extraction via its convolution and pooling
layers. A CNN consists of an input layer, a convolution layer,
and pooling layer, and towards the end of a CNN is a fully con-
nected layer [37]. The input layer represents the input image into
the CNN. The input images were normalized and rescaled from
0–255 to 0–1. After the input layer, a convolution layer in the
CNN model was used to extract features from an input image. An
activation function was applied to the convolutional layer.
Without an activation function, the CNN would not perform well
in a non-linear environment. A ReLU activation function was
used in this model and represented in Eq. (7).

ReLU(x) =max(0, x) (7)

Fig. 4 Point cloud slicing methodology for data collection

Fig. 5 Histogram of collected height and width data
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ReLU stands for a rectified linear unit and it is a popular activation
function due to its ability to converge quickly and prevent the van-
ishing gradient problem. Following the convolution step, a pooling
layer was utilized to reduce the spatial dimension of the network.
This pooling layer decreased the number of parameters and
overall computational complexity of the network. Specifically, a
max pooling layer was chosen for the CNN architecture. While
designing the CNN’s architecture, one must select the kernel size
and stride length for the max pooling operation. The max pooling
operation involves sliding the designated kernel with the specified
stride over the input, while choosing the maximum value within
the kernel. This process results in an output with a smaller size com-
pared to the input. Lastly, the fully connected layer receives an input
volume that is equal to the proceeding output of the convolution,
activation function, or pooling layer. It generates an N-dimensional
vector where N is equal to the number of values being predicted.
The output is obtained by subjecting the inputs to a linear activation
function. This algorithm was used to calculate a final bead height
value and allows one to use a CNN for regression. The loss function
that is minimized in this model for regression is the mean squared
error (MSE). The architecture of the CNN model used for modeling
bead height is pictured in Fig. 7. CNNs come in many different
architectures to suit different needs. Due to the need for real-time
bead height prediction on an edge device, a CNN with a relatively
small number of model parameters was chosen. The CNN model
trained used a Glorot uniform initalizer, Adam optimization, and
early stopping to prevent overfitting. The second model chosen to
model final bead geometry was a ϵ-SVR model [38]. The SVR
model was created by Vapnik in 1995 and creates a model by
fitting a hyperplane to the data so that the maximum number of
training observations are within the margin and observations
outside of the margin (slack variables) are penalized [39]. The valid-
ity of each model was tested using k-fold (k= 5) cross validation
which is a popular method for the evaluation of model performance

[40]. Before model training, 10% of the data was randomly with-
held for final testing. The remaining data were randomly divided
into five folds so that 18% of the data was included in each fold.
Additionally, the hyperparameters used in each model were tuned
using a grid search. For a CNN, the hyperparameters that were
tuned refer to batch size and learning rate. For SVR, the hyperpara-
meters that were tuned refer to the kernel coefficient for the radial
basis function (gamma) and regularization (C ). All models were
trained and evaluated on a computer with a NVIDIA Tesla P40
graphics processing unit and an Intel Xeon Gold 6140 processor.
In the next section, each extracted feature was analyzed to better

understand its relationship, if any, to final bead height and width.
This process was used to guide feature selection for the models
created to predict final bead geometry.

4 Results and Discussion
4.1 Image Processing Results. The features extracted from

the image were done so in an attempt to better understand the rela-
tionship between the images and final bead height. Overall, almost
all of the extracted features from the melt pool images when com-
pared to bead height were non-linear. Figure 8 displays the connec-
tion between laser power and height. From this figure, one can see
that height increases linearly with laser power up until 2150 W and
then height starts to decrease because the higher laser power
increases the bead dilution and depth on penetration into the build
plate. As a result, the width of the bead increases and the height
of the bead decreases. This trend was also observed in the work
completed by Shim et al. [18]. Figure 9 displays the features
extracted from the melt pool. The features from the fit ellipse and
rectangle follow the same trend of slowly increasing after a
height value of 1.07 mm. This height value corresponds to a laser
power greater than 1200 W. The height of the bead and the size

Table 3 Description of extracted melt pool and melt pool reflection features

Symbols Description

xmp, xir, xor X-coordinate of center of fit ellipse on melt pool, inner reflection, and outer reflection
ymp, yir, yor Y-coordinate of center of fit ellipse on melt pool, inner reflection, and outer reflection
amp, air, aor Major axis (half-length) of fit ellipse on melt pool, inner reflection, and outer reflection
bmp, bir, bor Minor axis (half-length) of fit ellipse on melt pool, inner reflection, and outer reflection
θmp, θir, θor Rotation angle of fit ellipse on melt pool, inner reflection, and outer reflection
emp, eir, eor Error in the fit ellipse on melt pool, inner reflection, and outer reflection
NOPmp, NOPr Number of pixels in melt pool and melt pool reflection
NOP>th Number of pixels inside reflection above a threshold of 180
hrec, wrec Height and width of rectangle fit to melt pool
xrec, yrec X and Y coordinates of rectangle fit to melt pool (located at the bottom-right of fit rectangle)

Fig. 6 Extracted melt pool and melt pool reflection geometry
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of the melt pool increasing after this laser power make sense as it is
getting closer to the ideal laser power of 2000 W for optimal
powder capture efficiency and thus a taller bead. Figure 10 displays
the features extracted from the inner and outer ellipse of the melt
pool reflection. Interestingly, a similar pattern of a quicker increase
around a height of 1.07 mm followed by a slower increase can be
seen for the major and minor axes of the ellipse fitted to the outer
reflection. Interestingly, around the same height value, there was
a decrease in the major and minor axes of the inner reflection. In

addition, Fig. 10 shows that the inner reflection ellipse-fit error
started to increase after a height of 1.07 mm, thus capturing the
change in melt pool reflection at this point. There was little
change in the values of the center of both the inner and outer reflec-
tion as well as ellipse orientation. Figure 11 displays the graphs for
spatter, number of pixels above a threshold of 180, number of pixels
in the melt pool, number of pixels in the reflection, the ellipse-fit
error for the melt pool, and the rotation of the ellipse fit to the
melt pool, respectively. As expected, the features that measure the
size of the melt pool and melt pool reflection increased after a
height of 1.07 mm. Interestingly, at this point, the error of the
ellipse fit of the melt pool was at a minimum at 1.07 mm. This
momentary decrease in eccentricity could have been a result of
the laser operating in the recommended deposition range, thus,
resulting in more circular melt pools due to optimal laser and
process parameters. At around heights similar to those created at
2300 W, the eccentricity increased, as the laser power exceeded
the optimal deposition range.Figure 12 displays the features
extracted from the image for texture analysis. The average intensity
(m), uniformity (U), entropy (E), and the third moment (μ3) all
display a similar pattern to what is seen when analyzing the features
extracted from the melt pool. Additionally, entropy was collected as
a measure of randomness in an image. Before these experiments, it
was thought that entropy may detect spatter resulting from inade-
quate powder capture due to insufficient laser powder. As seen in
Fig. 12, entropy was stable, and then it decreased linearly until it
appeared to stabilize around the tallest bead heights. This could
have been due to better powder capture and less spatter. It could
also have been a result of the increasing size of the melt pool and
nozzle reflection, which both would have increased entropy since
these features have constant intensity values. Additionally, the
image data captured from the laser power study can aid one in
understanding the general trends and characteristics of the data
used to train a model. Due to the overall non-linear nature of the
image data, a CNN and SVR were chosen as the models for com-
parison. A CNN was chosen due to its ability to perform well
when modeling complex, non-linear data. It was also chosen
because a CNN is able to automatically learn the most important
features in an image and does not require feature extraction and
certain image or melt pool proprieties. Additionally, an SVR was

Fig. 7 CNN architecture

Fig. 8 Height (mm) versus laser power (W). The error bars in the
figure represent one standard deviation.

Fig. 9 Features extracted from melt pool geometry (pixels)
versus bead height (mm). The error bars in the figure represent
one standard deviation.
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chosen for its ability to work well on non-linear problems and its
ability to be non-biased by outliers.

4.2 Feature Selection Using Gini Importance. After all fea-
tures were extracted, they were standardized so that they had zero
mean and unit standard deviation. To determine the most important
features, the 32 features were run through a random forest (RF)
regressor. RF regressors can be used to determine feature impor-
tance by measuring the impurity reduction of splits, also known
as calculating the Gini importance [41]. The most important fea-
tures were selected, which will be discussed later in the paper,
and fed into a SVR model to predict the final bead geometry. By
using a RF regressor to calculate feature importance and a SVR
for inference, one can achieve some explainability without sacrific-
ing model performance [42]. Figure 13 displays the Gini feature
importance calculated for predicting the bead height. The inner
reflection ellipse-fit error (eir) had the highest Gini feature

importance thus suggesting that this feature contributed signifi-
cantly to predicting bead height. This could be a result of the fact
that eir began to increase and then level off after a height value of
1.05 mm. This trend can be seen in other extracted features from
the images, however, eir had the tightest error bounds, which
could be why this particular feature contributed significantly to
the bead height prediction.

4.3 Support Vector Regression Results. Unlike a CNN, a
SVR model requires features to be extracted from the image
before training. In order to find the optimal number of features
to have the most accurate prediction for the least number of fea-
tures, SVR models were trained with an increasing number of
features added each time in the order of feature importance.
The results of this training can be seen in Fig. 14. Figure 14
shows the number of features added in the order of decreasing
feature importance. For example, the SVR with only one

Fig. 10 (a) Features extracted from melt pool reflection geometry (pixels) versus bead height (mm). (b) Rotation angle of fit
ellipse on melt pool reflection (rad) versus bead height (mm). (c) Error in the fit ellipse on melt pool reflection (pixels) versus
bead height (mm). The error bars in the figure represent one standard deviation.

Fig. 11 (a) Spatter versus bead height (mm). (b) Number of pixels inside reflection above a threshold of 180 versus bead height
(mm). (c) Number of pixels in melt pool versus bead height (mm). (d ) Number of pixels in melt pool reflection versus bead height
(mm). (e) Error in the fit ellipse on melt pool versus bead height (mm). ( f ) Rotation angle of ellipse fit on melt pool (rad) versus
bead height (mm). The error bars in the figure represent one standard deviation.
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feature used eir only. With only one feature, the SVR was still
able to achieve good validation results of a MAPE of 5.87%.
With all 32 features, the SVR was able to achieve a validation
score of 3.93%. Table 4 displays the grid search used for
tuning C and gamma hyperparameters. The regularization param-
eter determined the amount of acceptable error; this parameter
controlled the trade-off between the maximization of the
margin around the decision boundary (lower C ) and the correct
classification of training data points (higher C ) [41]. Gamma
determined the influence of an individual training data point
(low values mean that the radius of influence associated with
the data point is large). All combinations of gamma and C
values of interest were tested, and the mean accuracy across
five folds was evaluated. A radial basis function (RBF) kernel
was used for all models due to the complexity of the image
data. After performing the grid search, it was found that a
value of C= 1 and gamma= 0.01 resulted in the lowest average
MAPE over five folds.
In Fig. 14, one can see that a SVR trained on all features per-

formed better than an SVR trained on one or two features.
However, this performance improvement comes with a cost.
Extracting more features from the melt pool image increased the

Fig. 12 (a) Mean of intensity histogram versus bead height (mm). (b) Standard deviation of intensity histogram versus bead
height (mm). (c) Smoothness versus bead height (mm). (d ) Third moment of intensity histogram versus bead height (mm).
(e) Uniformity versus bead height (mm). ( f ) Entropy versus bead height (mm). The error bars in the figure represent one stan-
dard deviation.

Fig. 13 Gini feature importance for features extracted from
image used to predict bead height

Fig. 14 SVR MAPE (%) versus number of features added in
order of decrease feature importance
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feature extraction time, which increased the inference time for real-
time prediction and control of bead height. To quantify this tradeoff,
the average feature extraction time per image for each feature was
measured and is shown in Table 5. In Table 5, features are
grouped together if the main calculation was done once for all of
them. The most time-consuming feature to calculate was spatter.
From Fig. 13, one can see that spatter did not contribute signifi-
cantly to the feature importance and in Fig. 14 one can see that it
does not notably decrease MAPE. Thus, knowing this information
is important and can be used to create smaller, faster models for
real-time bead height monitoring and control. Since the decrease
in MAPE after training an SVM with the top six features was not
significant, the overall feature extraction time for the SVR model
was significantly reduced from 0.307 s to 0.1344 s. In the next
section, the results from training a CNN are discussed.

4.4 Convolutional Neural Network for Regression Results.
To tune the models, five-fold cross validation was used with a grid
search to optimize the selection of the learning rate and batch size
hyperparameters for a 64 × 64− pixel input image. A 64 × 64−
pixel image was selected for training since it was the smallest
sized image that did not significantly loose information when
viewed by a human. As the CNN model could potentially be
deployed on edge devices to predict layer height for feedback-based
machine control, it was essential to have a smaller model size suita-
ble for such devices. The size of the input image significantly impacts
the number of parameters in the model, which in turn affects the
required random-access memory (RAM) and graphics processing
unit (GPU) power necessary to run the model for inference.

Table 4 SVR (all features) hyperparameter tuning

Gamma C Avg. MAPE (%) Std. dev.

0.01 100 4.22 0.07
0.01 10 4.06 0.18
0.01 1 3.98 0.18
0.1 100 4.13 0.30
0.1 10 4.18 0.29
0.1 1 4.16 0.27
1 100 4.32 0.47
1 10 4.44 0.54
1 1 4.53 0.58

Table 5 Experiment process parameters

Features
Average feature extraction

time per image (s)

xmp, ymp, amp, bmp, θmp, xrec, yrec, hrec, wrec 0.0337
emp 0.0339
m, σ, μ3, R, U, E 0.0010
S 0.0502
NOP>th 0.0003
NOPmp 0.0329
NOPr 0.0055
xir, yir, air, bir, θir 0.0385
eir 0.0351
xor, yor, aor, bor, θor 0.0384
eor 0.0352

Fig. 15 64× 64 pixel uncropped (a) and cropped (b) images of melt pool

Table 6 CNN hyperparameter tuning for uncropped image

Batch size Learning rate Average MAPE (%) Std. dev.

32 0.0001 3.69 0.350
32 0.001 5.29 1.90
32 0.01 9.47 4.93
64 0.0001 3.89 0.475
64 0.001 6.85 1.53
64 0.01 5.66 1.20
128 0.0001 3.71 0.223
128 0.001 6.80 1.68
128 0.01 7.54 0.112
256 0.0001 3.60 0.158
256 0.001 6.93 1.44
256 0.01 7.64 0.192

Table 7 CNN hyperparameter tuning cropped image

Batch size Learning rate Average MAPE (%) Std. dev.

32 0.0001 4.27 0.313
32 0.001 6.99 1.25
32 0.01 7.64 0.189
64 0.0001 4.15 0.260
64 0.001 7.64 0.159
64 0.01 7.63 0.269
128 0.0001 4.23 0.180
128 0.001 7.64 0.135
128 0.01 7.63 0.204
256 0.0001 4.03 0.308
256 0.001 7.64 0.0845
256 0.01 7.64 0.0700
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Additionally, two CNN models were trained. One was trained with
uncropped images of the melt pool as can be seen in Fig. 15 and
the other was trained with cropped images of the melt pool. This
was done to see if the reflection contributed valuable information
that would help more accurately predict bead height. Little is
known in the literature regarding how the melt pool reflection is
related to final part geometry. The values chosen for each of the
hyperparameters in the grid search were chosen based on past expe-
rience. Based on the results in Table 6, one can see that the lowest
MAPE across five folds was achieved with a learning rate of
0.0001 and a batch size of 256. The learning rate hyperparameter
controlled the rate or speed at which themodel learned. Additionally,
batch size refers to the number of training examples utilized in a
single iteration of training prior to updating the model. Table 7 dis-
plays the batch sizes and learning rates used for tuning the model
trained on the cropped images of the melt pool. The best MAPE
score achieved during hyperparameter tuning over five folds was
4.03 with a batch size of 256 and a learning rate of 0.001. The grid
search showed that the same batch size and learning rate performed
best for both the uncropped and cropped image models. This makes
sense because the dimensionality of the data and the model architec-
ture remained the same between both models. However, the valida-
tion MAPE resulting from hyperparameter tuning was lower for the
model trained on uncropped images, thus suggesting that the reflec-
tion of the melt pool did provide valuable information for accurately
predicting bead height. After hyperparameter tuning, the models
were tested on the data in the test set to understand how the
models performed on unseen data. In the next section, the perfor-
mance of the SVR and CNN models are compared.

4.5 Model Performance Comparison. For a model to be fea-
sible for real-time bead height monitoring and control in a produc-
tion environment, it must be able to perform inference quickly and
be small enough to be executed on an edge device. For example, a
DED machine moving at a traverse speed of 500 mm/min with a
laser power of 2000 W would need an inference time of less
than 0.34 s to be able to control the bead height within the
average width of a single bead which was measured to be
2.8 mm. Thus, the ideal model is small and fast. For metal AM,
a reasonable tolerance is plus or minus 0.1 mm. Thus, any
MAPE under 10% will allow the machine to successfully
control bead height. Based on this requirement, one can see in
Table 8 that all four models met the requirements for inference
speed and a MAPE of under 10% on a test dataset. Additionally,
all models were sufficiently small and could easily fit on an edge
device. The SVR trained on only six features was found to be the
smallest model, however, the test MAPE was not as low as the
SVR trained on all features, which has the lowest test MAPE
and thus the best performance across all models. However, the
SVR trained on all features has the highest preprocessing time
per image, thus resulting in the highest inference time. The
0.307 s processing time still allows for inference within a single
melt pool, however, it is close to the limit of a 0.34 s inference
speed for real-time prediction and control. When considering
the overall performance, the best two models were the CNN
trained on the uncropped images and the SVR trained on all of
the features. If smallest inference time is considered most impor-
tant, then the CNN trained on uncropped images performed best.
If an accurate prediction of bead height is considered more

important than inference speed, then the SVR trained on all
images was found to be the best model. Additionally, all models
performed better than the 8.04% error reported from the
CNN-based sensing-geometry model trained to predict wire-fed
DED layer height by Jamnikar et al. [14].

5 Conclusion
In conclusion, this work presented a novel way to indirectly

measure bead height from a coaxial image of the melt pool using a
CNN and SVR with a MAPE of 3.68% and 3.67%, respectively.
This experiment proves that both SVR and CNN models can
model bead height based on only information from an overhead
image of the melt pool. A SVR allows for a smaller model but
larger image preprossessing time per image. This time is greatly
reduced using feature importance to reduce the number of features
trained in the SVR thus reducing the inference time by more than
half with a small increase in MAPE. Moreover, this research
shows that bead height can be identified from melt pool imaging
within a range less than the tolerance of most metal AM machines
(+/− 0.1 mm). Furthermore, this study presents a data collection
pipeline that facilitates rapid gathering of training data for models.
This pipeline not only enables non-contact, real-time measurement
of bead height but also offers seamless and cost-effective integration
with the machine using a coaxial camera. Unlike comparable solu-
tions, this setup eliminates the need for filters, calibration, or
waiting for the part to cool before measurements can be obtained.
Moreover, this investigation demonstrated that the proposed model
can be executed on an edge device to facilitate closed-loop or feed-
forward control. This is possible thanks to its compact model size,
rapid inference speed, and capacity to yield satisfactory outcomes
with small input images. The model was developed using Tensor-
Flow, making it compatible with contemporary edge devices such
as NVIDIA’s Jetson TX2. Therefore, the ability to detect bead
height in real-time will result in improved overall part dimensional
accuracy. Futureworkwill focus on addressing situations not consid-
ered here, including expanding themodel to address transient regions
at the start and end of a bead as well as in multi-bead depositions.
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Table 8 Model memory and computational time comparison

Model Features Model size
Preprocessing time

per image (s)
Inference time
per image

Total time
per image (s)

Test MAPE
(%)

CNN Cropped 64 × 64 × 1 image 35.3 MB 0.000225 0.0019 0.00213 4.21
CNN Uncropped 64 × 64 × 1 image 35.3 MB 0.000174 0.0019 0.00207 3.69
SVR All 65 KB 0.3074 0.00 0.307 3.67
SVR Top 6 20 KB 0.1344 0.00 0.134 3.86
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