David Gamero

George W. Woodruff School of
Mechanical Engineering,

Georgia Institute of Technology,
801 Ferst Drive,

Atlanta, GA 30332

e-mail: davidgamero@gatech.edu

Andrew Dugenske
Georgia Tech Manufacturing Institute,
Georgia Institute of Technology,

813 Ferst Drive,

Atlanta, GA 30332

e-mail: dugenske@gatech.edu

Christopher Saldana

George W. Woodruff School of

Mechanical Engineering,

Georgia Institute of Technology,

801 Ferst Drive,

Atlanta, GA 30332

e-mail: christopher.saldana@me.gatech.edu

Thomas Kurfess
George W. Woodruff School of
Mechanical Engineering,
Georgia Institute of Technology,
801 Ferst Drive,

Atlanta, GA 30332

e-mail; kurfess@gatech.edu

Katherine Fu’

Scalahility Testing Approach for
Internet of Things for
Manufacturing SQL and NoSOL
Database Latency and
Throughput

The proliferation of low-cost sensors and industrial data solutions has continued to push the
frontier of manufacturing technology. Machine learning and other advanced statistical
techniques stand to provide tremendous advantages in production capabilities, optimiza-
tion, monitoring, and efficiency. The tremendous volume of data gathered continues to
grow, and the methods for storing the data are critical underpinnings for advancing man-
ufacturing technology. This work aims to investigate the ramifications and design tradeoffs
within a decoupled architecture of two prominent database management systems (DBMS):
soL and NoSQL. A representative comparison is carried out with Amazon Web Services
(AWS) DynamoDB and AWS Aurora MySQL. The technologies and accompanying
design constraints are investigated, and a side-by-side comparison is carried out through
high-fidelity industrial data simulated load tests using metrics from a major US manufac-
turer. The results support the use of simulated client load testing for comparing the
latency of database management systems as a system scales up from the prototype stage
into production. As a result of complex query support, MySQL is favored for higher-
order insights, while NoSQL can reduce system latency for known access patterns at the
expense of integrated query flexibility. By reviewing this work, a manufacturer can
observe that the use of high-fidelity load testing can reveal tradeoffs in lIoTfM write/inges-
tion performance in terms of latency that are not observable through prototype-scale testing

George W. Woodruff School of
Mechanical Engineering,
Georgia Institute of Technology,
801 Ferst Drive,

Atlanta, GA 30332

e-mail: kfu26@wisc.edu

1 Introduction

The internet of things (IoT) brings enhanced productivity to indus-
trial manufacturing environments. The next big leap in manufactur-
ing technology is represented by the German strategic initiative
Industry 4.0, in which IoT, Big Data, and Service fundamentally
alter production as described by Kagermann and Wahlster [1].
Also referred to as the industrial internet of things (IIoT) or internet
of things for manufacturing (IoTfM) [2], this revolution holds the
potential to create a tremendous surge in manufacturing productivity,
driven by real-time access to vast droves of previously inaccessible
data in a granular, non-cost prohibitive format.

The growing intersection of automation and manufacturing has
given rise to a proliferation of new sources of information, allowing
increasingly sophisticated analysis of industrial data. As the space
grows, the methods, machines, and formats of analyzing the data
range from low-cost distributed sensors to specialized machine learn-
ing compute clusters in the cloud. The backbone of this revolution is
access to data that were previously cost-prohibitive to acquire.
Declining data storage costs allow historic records to be easily
archived for future analysis, and low latency IoT services can
provide crucial glimpses into live machine states across the world.

'Corresponding author.

Contributed by the Computers and Information Division of ASME for publication
in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received December 16, 2021; final manuscript received September 8, 2022; published
online October 10, 2022. Assoc. Editor: Christopher McComb.

Journal of Computing and Information Science in Engineering

of commercially available cloud DB solutions. [DOI: 10.1115/1.4055733]

Keywords: 10T, 1oTfM, MySQL, AWS, cloud, cybermanufacturing, industrial internet of
things, information management

In this emerging space, the need to understand data storage tech-
nologies and their tradeoffs is critical to every process that operates
on that data. Generalized performance metrics allow comparisons
between database management systems (DBMS). As data read and
write access are a fundamental activity in digital manufacturing,
architectural decisions made, such as the selection of a DBMS,
have cascading effects on the performance, scalability, and design
constraints for entire installations of industrial sensor systems.
Understanding the implications of different query languages and
data storage technologies, along with their relative compatibility
with respect to industrial sensor installations in manufacturing set-
tings, will be necessary in order to meet the full potential of the
digital industrial revolution. This work aims to characterize architec-
tural and design differences between structured query language (sQL)
and NoSQL databases through the lens of manufacturing, with a
focus on scaling up from a prototype size (<10 client IoT devices)
to a production system (>100 concurrent [oT assets). An implemen-
tation comparison is carried out using Amazon Web Services (AWS)
and simulated client loads seeded with over a year of historical IoT
data from instrumented assets at a major US manufacturing firm.
Simulated clients use the mean and standard deviation of message
size (measured in bytes) to generate randomized data of the same
volume and throughput rate as seen in the manufacturing firm.

The main contributions of this work can be summarized as
follows:

(1) Simulated client testing in a decoupled IoTfM architecture
reveals bottlenecks that are not inherent to any individual

DECEMBER 2022, Vol. 22 / 060901-1

Copyright © 2022 by ASME

mailto:davidgamero@gatech.edu
mailto:dugenske@gatech.edu
mailto:christopher.saldana@me.gatech.edu
mailto:kurfess@gatech.edu
mailto:kfu26@wisc.edu

layer within the architecture and could be undetectable at the
prototype scale, yet emerge at production scale. Results show
that it can be used for benchmarking vastly different database
technologies using a common set of metrics, such as latency
and throughput.
(2) The process for extracting and generating simulated IoTftM
clients that generate randomized traffic while maintaining
mean characteristics from a pre-defined backlog of IoT
records is demonstrated to provide a testing environment
simulating production workloads compared to directly
stress-testing the database layer itself.
An approach for measuring database latency and throughput
metrics from a decoupled IoTfM architecture was detailed in
this work. Results support that the metrics gathered are able
to provide non-obvious insights into performance tradeoffs
within the database layer of the decoupled architecture. Iso-
lating the latency within the database layer could be used to
inform architectural decisions and evaluate potential alterna-
tive database technologies for future research on IoTfM
system configuration.

(€]

~

2 Background

Several technologies, protocols, and models are used in the field
of cyber physical systems (CPS). This section introduces these
layers in successive order as each technology builds upon earlier
ones. Additionally, proposed architectures for cyber physical pro-
duction systems (CPPS) are introduced.

Several database technologies and types are described, and exist-
ing work investigating databases in both generalized and [oTfM use
cases is summarized. Next, one area of investigation is highlighted,
and the research questions for this work are introduced.

At the intersection of cyber systems and physical systems, CPS
have become increasingly ubiquitous, driven by plummeting hard-
ware costs and commoditized network access in manufacturing
environments. As asserted by Mourtzis et al., the amount of data
generated as low-cost sensors proliferate is rapidly growing [3].
The work presented in this thesis is highly relevant to the design
and data management of CPS.

Message queuing telemetry transport (MQTT) “is designed as an
extremely lightweight publish/subscribe (Pub/Sub) messaging
transport that is ideal for connecting remote devices with a small
code footprint and minimal network bandwidth” [4]. MQTT
makes use of a broker, acting as a message bus, to transfer messages
from publishing clients to receiving clients by topic. Topics are
arbitrarily designated within an installation to segment information
and allow finer subscription granularity. MQTT has found wide use
in IoT, as it allows for flexible architectures with multiple clients
and subscribers without heavy computational requirements or over-
head [5,6].

Alongside hypertext transfer protocol and MQTT, protocols such
as constrained application protocol [7] and advanced message
queuing protocol [8] are used in the IoT space. For IoT systems,
each of these protocols has advantages in compatibility, message
size, architecture, and encryption. MQTT is the default protocol
for the major cloud providers, including AWS, Google Cloud Plat-
form (GCP), and Microsoft Azure [9].

MQTT supports the transmission of messages with three quality
of service (QoS) levels. QoS level 0 does not include message
receipt acknowledgment, and messages are only transmitted once.
This QoS level has the least overhead, and the tradeoff is that mes-
sages are not guaranteed to be delivered. QoS level 1 guarantees a
message is received at least once but could be delivered multiple
times. A copy is kept by the sender until the message receipt is con-
firmed. QoS level 2 guarantees a message is received exactly once
and includes coordinated transmission in which both ends acknowl-
edge transmission and receipt of the message [4]. However, none of
the levels guarantee the order in which messages are transmitted.

The growth of cloud computing is exemplified by a “shift in the
geography of computing”, in which software is executed on remote

060901-2 / Vol. 22, DECEMBER 2022

computers in data centers accessed through the internet [10]. The
tasks involved in managing hardware are handled by cloud provid-
ers who offer incremental pricing for access to a set of centralized
servers. As defined by The National Institute of Standards and
Technology, the cloud computing model allows various clients to
share computing resources as services. The main tenet is the ease
with which clients can easily change service requirements in a
low-cost way [11]. The basic services provided include software,
platform, and infrastructure, provided in user-centric and
task-centric ways [12]. Major providers include AWS [13], Micro-
soft Azure [14], and GCP [15], with each offering a variety of ser-
vices [16].

Data can be transmitted to the cloud from sensors installed on
assets. Data can also be transmitted locally or used on-premises.
In the decoupled architecture proposed by Nguyen and Dugenske
[2], gateways have the potential to aggregate data into a single con-
nection from multiple discrete sensors. The primary purpose of
gateways is to convert the specific protocol of the device to the pro-
tocol of the architecture. The sensor data are acquired using
low-cost hardware and transmitted through the architecture to a
Pub/Sub message bus where data consumers can receive it. One
of the consumers proposed is an archiving service that inserts
data into a database to keep historical records. More distributed pro-
posed architectures include a network connection for each individ-
ual sensor.

Bongci et al. [17] proposed an architecture that includes running
lightweight sQL databases on each sensor to further decentralize
the data. This approach creates duplicate records across the data-
bases and heavily relies on the execution of stored procedures to
transmit the new data to synchronize all the independent databases.
This work recognized the potential of MQTT as data distribution
and Pub/Sub for the distribution of IoT payloads.

The prevalence of IoT has led to the development of standardized
offerings from major cloud providers that leverage MQTT to create
managed [oT deployments and integrations as a service, known as
10T as a service (IoTaaS). AWS IoT core is a software as a service
(SaaS), which can be integrated with infrastructure as a service
(laaS) and platform as a service (PaaS) offerings from Amazon
Web Services. Similar to offerings from Azure IoT and Google
cloud IoT, each offers Pub/Sub using MQTT with different restric-
tions including topic names. Client connections in AWS IoT Core
are capped in data message transfer frequency by AWS; for
example, a single AWS IoT core client is limited to 100 Hz
message frequency at the time of writing. Messages that exceed
the client message publish quota are discarded. This limits the
number of shared connections on a single gateway; however, addi-
tional connections are trivial to implement, bypassing this limitation.

Within the 5Cs architecture model proposed and discussed by
Lee et al. [18] and Monostori [19], every level is built upon increas-
ingly complex and auto-correlated analysis of underlying sensor
data. Beginning at the base level in which a sensor network estab-
lishes communication, the data conversion, cyber, cognition, and
configuration levels delineate progressively removed and abstract
insights.

The architecture is built in an unopinionated way toward data
storage but is influenced by latency and throughput limitations of
all underlying technologies. As we rise through the layers, the com-
plexity of analysis and the processing power necessary to derive
insights increases. Each layer performs additional transformations
and calculations on the computed outputs of the layers below it, cul-
minating in layer 5, in which machines can self-configure, self-
adjust, and self-optimize.

Data from industrial IoT can grow to volume, velocity, and variety
consistent with Big Data [20]. For analyzing industrial Big Data, the
same techniques that non-industrial Big Data utilizes are applicable.
The use of data lakes to store a combination of structured and
unstructured data for archival analysis and insights may lead to the
use of cluster-based scalable solutions, such as MapReduce,
Hadoop, and Apache Spark. While ideal for large workloads, they
require specialized implementations [21,22]. The prevailing

Transactions of the ASME

architectural models for CPPS are to store the data in databases or
data stores and use queries to extract insights from each layer of
data to produce higher-order information [23]. Some proposed archi-
tectures [17] suggest sQL databases as an option, while others are
unopinionated about database technology. Current NoSQL offerings
leverage online transaction processing for models such as document
stores and key-value stores.

2.1 Databases. sqQL databases differ from NoSQL databases in
a series of critical ways. sQL databases have a rigidly defined
schema, which requires that the data fields be known in advance
to configure the database to store records before receiving them
[24]. sqQuL databases can be configured on a single server with
optional additional read replicas, or in a sharded cluster configura-
tion. sQL databases support atomic, consistent, isolated, and durable
transactions, creating a reliable enterprise data storage system. The
storage-optimized nature of sQL enables flexible querying of rigidly
defined data schemas that may require complex relationships [25].

AWS relational database service (RDS) offers single-master and
multi-master configurations for MySQL compatible Aurora data-
base clusters. In single-master configuration, write throughput
scales vertically with hardware, in that upgrading a dedicated
MySQL instance can improve performance, but additional servers
cannot be added to achieve a similar increase. Single-master clusters
have a single write instance and multiple read replicas that increase
data availability. Multi-master configurations allow continuous
availability via writing across multiple instances in the cluster. In
this thesis, an Aurora MySQL single-master cluster with a single
instance was used.

NoSQL databases are frequently key-value or document stores in
which a primary key and/or sort key are used to retrieve specific
records without a rigidly defined table schema. Records can be
inserted with arbitrary fields, and data relationships, such as
foreign keys, are not strictly enforced. Data fields and relationships
do not need to be known in advance when writing records to a
NoSQL database. Additionally, NoSQL data are typically less nor-
malized, leading to duplicate records that must be maintained.
NoSQL database to support the high read-write speeds, it must be
designed with advanced knowledge of the query structures and
access patterns that will be used for retrieving records. This struc-
ture is well-suited for high-traffic use with known access patterns
but becomes unwieldy with poorly defined access patterns.

Rautmare and Bhalerao [26], and Fatima and Wasnik [27] have
found expected results for IoT use cases: the single-transaction
latency and write speed of NoSQL databases have been found to
increase at a lower rate with increasing transaction volume and fre-
quency when compared to sQL databases in IoT applications. The
ability to distribute disk writes across an arbitrary number of com-
modity instances makes NoSQL write performance excel compared
to single-master sQL. The distributed data across instances result in
rigidly pre-defined access patterns; therefore, the flexibility of
queries is dramatically restricted in NoSQL compared to sqL.
Both databases have scalable implementations that sacrifice transac-
tion consistency to achieve higher throughput [28].

Current IoT as a service offerings can have zero-code integrations
for writing received records on MQTT topics to both sQL and NoSQL
databases, with integrated schema-generators for sQL and automatic
primary/sort key configuration for NoSQL. Setup and client/device
onboarding can be automated as well, with granular permissions
and integrations available on major cloud providers.

Amazon Web Services offer IoT Core, an MQTT broker platform
for IoT. Messages relayed to IoT Core are secured using a secure
sockets layer (SSL)/transport layer security X.509 certificate [29]
and are specific to an AWS account” thing” under which the certif-
icate is issued. Architecture norms use a single certificate per con-
nected device to enable granular permissions and certificate
authorization via attached AWS identity and access management
roles that specify permissions at a device level. Permissions
include topic Pub/Sub access and authorization.

Journal of Computing and Information Science in Engineering

Other tangential data pipeline management systems are data
streaming services, such as Apache Kafka [30,31] and AWS
Kinesis. These platforms are designed for large-scale event
streams and facilitate live analytics. Data streaming services func-
tion as an additional data routing layer that regularly includes a des-
tination, such as a database management system; data streaming
services act as a buffer and data conduit that aggregates data at a
high rate while allowing transformations to be performed live on
the data. Throughput and latency in these systems exhibit promising
results in IoT applications, such as traffic monitoring [32]. Since
they are not databases, they are not examined further in this work.

In summary, work done in the CPS field is inextricably linked
with data storage and transmission technology. As the field
grows, the volume of industrial data swells, which will create
new challenges for data processing scale. Generalized work in dis-
tributed computing and database throughput has been extensively
applied to manufacturing, but work leveraging the narrower
subset of constraints for data architectures in manufacturing settings
is limited. Proposed IoT data architectures are diverse and numer-
ous yet manufacturing data processes can be deeply entrenched in
momentum as they grow beyond the proof of concept stage.

This work aims to address these needs with the following
research objectives:

(1) Characterizing the scalability behaviors of NoSQL and sqQL
databases in the context of existing CPS and CPPS frame-
works as measured by latency.

(2) Enumerating scaling factors and bottlenecks encountered
during synthetic load tests seeded with data from a major
US manufacturing firm.

In order to investigate these questions, a test approach is pro-
posed, and evaluated with respect to existing CPS and CPPS frame-
works. By extracting metadata parameters and statistics from an
authentic manufacturing data set, the accuracy of existing general-
ized work can be examined with respect to the more rigidly defined
use case of manufacturing [oT data.

3 Approach

The methods proposed in this section aim to detail a high-fidelity
stress testing architecture and its application in characterizing the
scaling behaviors of an IoTfM installation using either a NoSQL
or sQL database in AWS. The integration of statistics extracted
from an active IoTfM installation is used to seed higher-fidelity sim-
ulated clients. First, the data set itself is introduced, followed by the
steps by which representative statistics were extracted. These statis-
tics capture distribution and average information for two key
metrics in this analysis: latency and throughput. The latency corre-
sponds to the full duration from message transmission over MQTT
to the time at which the record is written into a final database.
Throughput corresponds to the rate at which messages are transmit-
ted through the system. Depending on the architecture of the IoTfM
system, this can include many intermediate steps. In this work, the
decoupled architecture proposed by Nguyen and Dugenske [2] will
be examined. Next, the process for creating simulated clients for
load testing purposes is detailed. The software and test plan config-
uration are introduced. The simulated clients are used to stress test
two different databases, AWS Aurora MySQL and DynamoDB.

3.1 Data. Data were collected from a large US manufacturing
firm to determine the characteristics of the cyber physical produc-
tion systems that had been instrumented and running on an active
production floor for over a year. Data were queried from a
MySQL table of over 100 million records spanning 57 assets.
The MySQL message archive table contains a full history of
MQTT payloads and transmission timestamps for 18 months of
the assets’” activity from February 2019 to October 2020.

The system that collected the data followed the decoupled archi-
tecture proposed by Nguyen and Dugenske [2] in which data were

DECEMBER 2022, Vol. 22 / 060901-3

received over MQTT and written to an AWS RDS MySQL
instance. Non-production assets were detected via a flag on the
associated data and excluded from this analysis, as they were
used for testing the system and are not representative of an active
industrial IoT data system. sQL queries were used to exclude test
assets by using a “where” clause to exclude data in a subquery.

The mean and standard deviation of the data payload size for each
instrumented asset and the overall dataset were calculated to serve
as representative samples. The payload size ranged in the order of
magnitude from 1x 10 to 1x 10’ bytes. The mean and standard
deviation of the frequency of message transmission for each asset
were calculated. The message transmission frequency per asset
had an order of 1x10'=1 x 10> Hz. The mean and standard devia-
tion for the message transmission frequency were also calculated
for the entire data set as calculated with arithmetic mean shown
detailed in Eq. (1), and sample standard deviation detailed in
Eq. (2). This value was used in conjunction with the data payload
statistics to create a test plan in Apache JMeter.

1 n
,—l;xi)

_ Z?;] (Xi _X)z
5= V' w-1 @

Sample standard deviation S was calculated using values in the
sample set X, the sample set mean X, and the number of samples n.

3.2 Data Set Schema. Full copies of received MQTT mes-
sages were archived in a table along with metadata about the
message. Columns used in this work and their datatypes are listed
in Table 1. For the purposes of this work, latency and throughput
are the most relevant metrics. Average throughput can be calculated
directly from the dateTimeReceived column through straightfor-
ward manipulation of arithmetic mean, as shown in Eq. (3).

1

Tend — Fstart

X1 3

where ty,, and f.,q are sample time bounds, and X is the set of
received MQTT messages received between those bounds inclu-
sively, expression (3) is equal to average throughput.

3.3 Simulated Clients. In order to run load tests, client assets
were simulated using Apache JMeter and integrating statistics taken
from the data set to reproduce high-fidelity load scenarios. Apache
JMeter is an open-source load testing and performance-measuring
application built using java [33]. The software runs on the Java
virtual machine and supports plugins for interfacing through
various protocols including MQTT.

Apache JMeter version 5.3 was used to simulate clients in an
AWS cloud environment, transmitting messages from an elastic
cloud compute (EC2) instance to the AWS IoT core service end-
point, as depicted in Fig. 1. One client refers to a single sensor,
instrument, or data stream source attached to a manufacturing
asset. All experiments were run in the US-East-1 region. JMeter
was executed from an AWS EC2 instance running the Amazon

Table 1 Manufacturing data set messages schema

Column Type Note

Id int(11) autoincremented unique identifier
dateTimeReceived timestamp UNIX timestamp

topic varchar Slash-delimited MQTT Topic
payload varchar Stringified Payload JSON object
assetld varchar Asset Unique Identifier

060901-4 / Vol. 22, DECEMBER 2022

AWS EC2 Instance

i

APACHE

/ Meter

Simulated Asset Clients

LA

nininjaja)a
N

MQTT
Messages
loT Core
RDS Aurora MySQL DynamoDB

Fig. 1 The virtual test bench leverages simulated asset clients
in Apache JMeter running on an EC2 instance to create high-
fidelity loading conditions for AWS loT Core. loT Core relays
messages to DynamoDB and RDS Aurora MySQL database man-
agement systems.

machine image amzn2—ami—hvm—2.0.20200904.0—x864—
gp2sizedasat3.medium.

The MQTT-JMeter plugin from XMeter-net was used to enable
MQTT capabilities within the JMeter stress testing tool. A test
plan file was created using the graphical user interface mode, and
then executed in command line mode using flags and writing
outputs to log files to ensure optimal testing performance.

3.3.1 Test Plan. The JMeter test plan was structured with a
thread group containing three main stages: the MQTT connect,
message loop logic controller, and MQTT disconnect. An aggregate
report listener and summary report listener were used to collect
results after the thread group during test plan development.
Within the message loop logic controller, a constant throughput
timer was used to generate traffic, and the timer was configured
using parameters extracted from the data set. A Gaussian timer
was added to introduce noise and configured using the parameters
extracted from the data set as well.

Within the JMeter test plan, several fields use command line
parameter substitution to allow the test plan variables to be modified
by passing parameters as flags. This is used later in bash scripting
for sweeping the variable space and automating the execution of
tests with varied initial conditions. For example: “${P(clients,1)}”
substitutes the value of the “clients” parameter from the
command line flag, which is passed to JMeter after the flag of the
same name prefixed by the letter “J”. In the following command,
the number of clients is set to ten, which is parsed when the
command is run, and substituted into the test plan for each instance
of the parameter retrieval.

$./JMeter — n testplan - jmx — Jclients = 10

The test plan was executed via the command line, with two
primary parameters passed as flags, clients, and duration.

Within Apache JMeter, a test plan was created with a single
thread group. The thread group was configured with attributes
detailed in Tables 2 and 3. The thread group was the singular
highest level component in the test plan hierarchy, and it contained
the MQTT connect sampler, runtime controller, and MQTT discon-
nect sampler.

Transactions of the ASME

Table 2 Thread group configuration

Table 5 MQTT Pub Sampler JSON fields and values

Setting Value Type JSON field JSON value Detail

Action to be taken after a sampler error Continue radio timeTransmitted ${__time()} Transmission timestamp

Name <arbitrary> text thread ${__threadNum} Thread id within thread group

Comments <arbitrary> text numClients ${__P(clients,1)} Clients parameter
trialDuration ${__P(duration,1)} Duration (seconds) parameter

Table 3 Thread group properties detailed in Table 6. The time() method was used to retrieve the

Setting Valus Tnput type UNIX time stamp at transmission and embed it in the message,
which was parsed later to measure latency through the entire

Number of threads (users) ${_P(clients,1)} Radio system. . . .

Ramp-up period (s) 0 Number A Gaussian random timer element was configured to introduce

Loop count 1 Number hoise present in the data sample. The sample standard deviation

Infinite (loop count) False Radio and mean were configured in this element. The ConstantDelayOff-

Same user on each iteration True Radio set property was set to the mean, and the Deviation property was set

Delay thread creation until needed False Radio to the sample standard deviation.

Specify thread lifetime False Radio

The MQTT connect sampler was added to the test plan as the first
child element to the thread group. This element was executed first
within each thread in the test plan. It was configured for compatibil-
ity with AWS IoT Core. The certificate .p12 file that is supplied was
downloaded from IoT Core after issuing a new certificate through
the “Add a new Thing” onboarding panel in AWS IoT. The file’s
contents are not reproduced in this work as it is arbitrary with
respect to the methods and results as long as the file is configured
as detailed in this work. The certificate was granted read and
write permissions for an arbitrarily named MQTT topic that was
pre-specified for the duration of all load testing trials. The MQTT
connect sampler was configured as detailed in Table 4.

The runtime controller contained the main execution loop. The
runtime controller contained elements to carry out two functions:
transmitting the MQTT messages and controlling the timing. The
runtime controller itself limited the total runtime of each trial and
used the duration flag parameter to set the duration in seconds for
each trial.

The MQTT pub (publish) sampler transmitted the MQTT mes-
sages to the pre-defined topic for each simulated client. The
payload was a string in JAVASCRIPT object notation (JSON) format.
The JSON fields in the MQTT pub sampler payload are enumerated
in Table 5. Configuration parameters for the sampler itself are

Table 4 MQTT connect sampler properties

Setting Value Input type
MQTT connection AWS IoT Core end-point Radio
address
Port number 8883 Number
MQTT version 3.1 Dropdown
Timeout (s) 10 Number
Protocols SSL Dropdown
Dual SSL authentication True Radio
Client certification (*.p12) Certificate from AWS IoT File
Core
Secret <intentionally blank> Text
User name <intentionally blank> Text
Password <intentionally blank> Text
Clientld conn Text
Add random suffix for True Radio
CliendId
Keep alive(s) 300 Number
Connect attempt (sic) max 0 Number
Reconnect attempt (sic) max 0 Number
Clean session True Text

3.4 MQTT and Database Ingest Pipelines. Data were trans-
mitted and relayed using IoT Core integrated actions to write data to
a MySQL Aurora cluster via a Lambda function in one set of trials,
and a DynamoDB table in the second set of trials. The DynamoDB
table was set to enumerated values and write capacity units with
auto-scaling enabled.

The MySQL Aurora cluster consisted of a single db.r5.large
instance. The MySQL Aurora cluster was configured as a single-
master cluster with no read replicas.

3.5 MySQL Aurora Database. The MySQL Aurora Data-
base was one of the two data destinations for MQTT messages
ingested via the AWS IoT Core. Since at this time there is not a
direct integration with MySQL Aurora in the IoT Core Actions
that were triggered when MQTT messages were received, a
Lambda function rule action was triggered that utilized a shared
pool of MySQL Connections. The Lambda function was invoked
using the IoT Core rule action, including the plain text MQTT
message, which was parsed into a JSON object made up of key-
value pairs.

The database was initialized with a schema detailed in Table 7
that included a single table using the InnoDB engine. The Aurora
Cluster was comprised of a single db.r5.large instance function
as the reader and writer.

3.6 DynamoDB Database. The DynamoDB Database was the
second of the two potential data destinations for the MQTT mes-
sages ingested via the AWS IoT Core. DynamoDB features a
direct integration with IoT Core, so the DynamoDB write IoT
Core rule action was used to relay information. The DynamoDB
table was created with a primary key of the asset ID and a sort
key comprised of the uUNIX timestamp in milliseconds of the
message transmission time.

Table 6 MQTT Pub Sampler configuration parameters

Setting Value Input Type
Name <arbitrary> Text
Comments <arbitrary> Text
Quality of service 0 Dropdown
Retained messages False Text
Topic name <arbitrary> Text

Add timestamp in payload False Radio
Payloads String Dropdown
Payload <see 5> Text

Journal of Computing and Information Science in Engineering

DECEMBER 2022, Vol. 22 / 060901-5

Table 7 Manufacturing data set messages schema

Column Type Note

messageld int(11) autoincremented primary key
datelnsert datetime(3)

payload varchar(150) JSON payload as string

3.7 Latency Measurement. Latency metrics for both the
NoSQL and MySQL systems were retrieved using the AWS
PYTHON application programmer interface (API). The trial start and
end times were recorded from the command line via secure shell
for the execution of the load tests, and then entered into the decreas-
ing start and decreasing end configuration variables. Since the archi-
tecture includes a Lambda execution for the MySQL insertion, but
the DynamoDB integration is fully managed, the full latency for the
MySQL configuration is measured from the point of rule invocation
onward. For MySQL, this is defined by the Lambda execution dura-
tion, as the MySQL Insert operation itself occurs as the final code
execution within this duration, and it includes the invocation
delay that increases overall insertion latency.

4 Results and Discussion

The results of the proposed synthetic load testing methodology
are presented and evaluated in this section. The decoupled digital
architecture is analyzed at the database insertion stage for both
the NoSQL and MySQL configurations. Also, performance is eval-
uated in terms of database write throughput and insertion latency
across database type and volume of connected simulated clients.

First, the end-to-end characteristics of the proposed synthetic
load testing are evaluated for convergence to ensure the data
throughput is stable. The stable experiment duration is determined
across all proposed client test load sizes to isolate the effect of
ramp-up in the time series data.

Next, the write performance of both isolated DBMS configura-
tions is evaluated to establish a baseline performance for later
benchmarking. Of the 57 assets included in the data set, 33
remain after excluding the testing/non-production assets. The size
in bytes of the MQTT payload for the messages from valid assets
is calculated. The mean and standard deviation of this signal are
used for the simulated test assets. These data are used to form a
model test asset that generates a realistic volume and rate of
message data based on the real assets observed. Replicas of this
model test asset are then created in the cloud to generate the simu-
lated loading conditions.

Next, the results of request throttling via under-allocation of the
writecapacityunit parameter are presented. These results include
consumed write capacity units, throttled request rate, and rate of
client message receiving as recorded by AWS IoT Core Publish
In Successes.

Next, the results of the database insertion latency for both
NoSQL (DynamoDB) and MySQL (Aurora) are presented. The
results are shown for both increasing and decreasing client loads
in order to account for auto-scaling momentum in which the Dyna-
moDB throughput could be distorted. Verifying results with both
increasing and decreasing client load configurations also accounts
for Lambda container re-use that can drastically impact latency
via cold-start times. A summary of these results is provided at the
end of the section.

4.1 End-to-End Characterization. Figures 2-6 show the
end-to-end latency of the system from message transmission to
message write completion on the Y-axis in milliseconds, plotted
over a range of trial durations in seconds on the X-axis. Error
bars reflect one sample standard deviation. The main objective of
the end-to-end analysis is to evaluate the viability of trial durations

060901-6 / Vol. 22, DECEMBER 2022

1 Clients MySQL loT (1 std error)

900 A

800 1

700 A

600 -

500 1

400 A

Average Latency (ms)

300 1

SRR

100 A

bbby

10° 10! 102
Trial Duration (s)

Fig. 2 MySQL average latency with 1 client, variable duration.
This figure shows the end-to-end latency of the system from
message transmission to message write completion on the
Y-axis in milliseconds, plotted over a range of trial durations in
seconds on the X-axis. Error bars reflect one sample standard
deviation.

for later experimentation. One objective is to identify trial durations
that are too short, as they experience distortion of the latency by
client initialization delays, which are not present in the system at
a steady-state. The rapid decline and stabilization with increasing
trial duration shown in Figs. 2, 3, and 5 indicate that trials converge
on the order of 10'-10% s of trial duration. Figure 7 fails to con-
verge, indicating that the 500 clients’ results are not indicative of
a steady-state.

4.2 DynamoDB Writing. After evaluating the end-to-end
system with a MySQL configuration, an isolated database verifica-
tion for auto-scaling and request throttling was executed. Figure 8
shows DynamoDB consumed write capacity units, DynamoDB
throttled requests, and IoT Core Successful publishes over MQTT
for two trials with DynamoDB configured with 5 and 200 write
capacity units, shown on the left and right halves, respectively.

5 Clients MySQL loT (1 std error)

450

400

350 1

300 4

250 A

200 4

Average Latency (ms)

150 H

100 1

10° 10! 10?
Trial Duration (s)

Fig. 3 MySQL average latency with 5 clients, variable duration.
This figure shows the end-to-end latency of the system from
message transmission to message write completion on the
Y-axis in milliseconds, plotted over a range of trial durations in
seconds on the X-axis. Error bars reflect one sample standard
deviation.

Transactions of the ASME

10 Clients MySQL IoT (1 std error)

220 9

200 -

180 4

160 +

140 4

Average Latency (ms)

120 4

100 1

10° 10! 102

Trial Duration (s)
Fig.4 MySQL average latency with 10 clients, variable duration.
This figure shows the end-to-end latency of the system from
message transmission to message write completion on the
Y-axis in milliseconds, plotted over a range of trial durations in
seconds on the X-axis. Error bars reflect one sample standard
deviation.

The simulated client load was 100 clients seeded with statistic
parameters from the data set. The throttled requests were exclu-
sively write requests to the DynamoDB table, since no read requests
were executed during this time frame. The auto-scaling burst capa-
bility of DynamoDB is responsible for the large spike in consumed
write capacity units at 19:35 for the 5 write unit trial. The write
requests were executed with a latency of less than 25 ms for all mes-
sages. With auto-scaling enabled, the 200 write unit capacity was
able to service the full load without throttling any requests, while
the 5 write units were unable to process the requests and bottle-
necked into a large number of throttled requests.

4.3 MySQL Aurora Writing. The same test was executed
using the MySQL relational database management system
(RDBMS) and observed to meet a write request latency of below
25 ms as shown in Figure 9. These results are consistent with

50 Clients MySQL loT (1 std error)

400 1

300 1

200 A

Average Latency (ms)

|

10° 10! 102
Trial Duration (s)

100 1

Fig.5 MySQL average latency with 50 clients, variable duration.
This figure shows the end-to-end latency of the system from
message transmission to message write completion on the
Y-axis in milliseconds, plotted over a range of trial durations in
seconds on the X-axis. Error bars reflect one sample standard
deviation.

Journal of Computing and Information Science in Engineering

100 Clients MySQL loT (1 std error)

220 1

200 4

180 1

160 +

140

120 4

Average Latency (ms)

100 1

80

10° 10! 102

Trial Duration (s)
Fig. 6 MySQL average latency with 100 clients, variable dura-
tion. This figure shows the end-to-end latency of the system
from message transmission to message write completion on
the Y-axis in milliseconds, plotted over a range of trial durations
in seconds on the X-axis. Error bars reflect one sample standard
deviation.

both existing literature and expected performance benchmarks.
The MySQL trials used the same simulated 100-client configuration
as the NoSQL trial. Throttling conditions were detected via the con-
current Lambda limits since a direct integration with the AWS RDS
service for writing records was not available, and Lambda was used
to write messages from [oT Core to the RDS Instance. Through ver-
tical scaling via increasing configured instance size, the RDS
instance can reach 200,000 writes per second, while DynamoDB
by default is limited to 10,000 writes per second per table. The
DynamoDB limit can be raised easily to far exceed RDS write
limits, but at the cost of losing support for stream-enabled analytics.

4.4 NoSQL and MySQL Load Testing. Given the results of
the two earlier sections, the write throughput was serviced fully,
resulting in identical throughputs for all configurations from
NoSQL and MySQL; however, the latency differed in a statistically

500 Clients MySQL loT (1 std error)

200 A

150 1

100 A

Average Latency (ms)

50 4

10° 10! 102
Trial Duration (s)

Fig. 7 MySQL average latency with 500 clients, variable dura-
tion. This figure shows the end-to-end latency of the system
from message transmission to message write completion on
the Y-axis in milliseconds, plotted over a range of trial durations
in seconds on the X-axis. Error bars reflect one sample standard
deviation.

DECEMBER 2022, Vol. 22 / 060901-7

5 Write Capacity Units

ConsumedWriteCapacityUnits, Provisioned...

Count

11.8k

5.93k

19:30

1920 19:25 19:35 19:40 19:45
@ ConsumedWriteCapacityUnits
@ ProvisionedWriteCapacityUnits
ThrottledRequests
Count
296k
151k
6.05k
19:15 19:20 19:25 19:30 19:35 19:40 19:45
@ ThrottledRequests
Publishin.Success
Count
101K
50.6k
5
19:15 19:20 19:25 19:30 18:35 19:40 19:45

@ Publishin.Success

200 Write Capacity Units

ConsumedWrite CapacityUnits, Provisioned...

Count

12.0k

6.00K

19:40 19:45 19:50 19:55 20:00 20:05

@ ConsumedWriteCapacityUnits
@ ProvisionedWrite Capacity Units

ThrottledRequests

Count

36.8K

36.8k »

36.8k
19:35

@ ThrottledRequests

19:40 19:45 19:50 19:55 20:00 20:05

Publishin.Success

Count

60.0k

30.0k

5
19:35 19:40
@ Publishin.Success

19:45 19:50 19:85 20:00 20:05

Fig.8 DynamoDB 100 clients trial. This figure shows event counts on the Y-axis in per minute buckets and the X-axis reflects

time.

significant way. Figure 10 shows the latency of the isolated database
portion of both configurations. For the DynamoDB configuration,
the insertion is tracked through the managed monitoring solution
integrated with AWS CloudWatch. For the MySQL configuration,
the latency is primarily impacted by the Lambda function’s invoca-
tion and execution time. The MySQL database Insert operation
duration is included in this metric, as the function does not complete
until the insert operation is complete. An increase in rate of execu-
tion of Lambda functions can trigger new container provisioning,
introducing cold-start delays. Executing the largest number of

060901-8 / Vol. 22, DECEMBER 2022

clients first and then maintaining a monotonic, decreasing number
of client connections concentrate the cold-start times in the time
before the first trial. Trials with increasing client loads distribute
this cold-start latency throughout the trials instead of aggregating
most of the delay at the start of the experiment.

To ensure that the effects observed were not driven by Lambda
cold-start behavior and DynamoDB auto-scaling momentum, the
experiment was also run in reverse, and the results are shown in
Fig. 11. Both the increasing and decreasing load configurations
show that the DynamoDB latency begins significantly higher and

Transactions of the ASME

MySQL Aurora Trial with 100 Clients

Insert Throughput Per Second

Count/Second
201
101 [\
0.5
14:25 14:30 14:35
@ Insert Throughput
MySQL Aurora Insert Latency
Milliseconds
0.238
0.095
14:25 14:30 14:35
@ Insert Latency
SuccessfulRequestLatency
Milliseconds
21.7
1542 f
8.77
14:25 14:30 14:35

@ SuccessfulRequestLatency

MySQL Aurora CPU Utilization

Percent

23
135 ﬂ
4

14:25 14:30 14:35

@ CPU Utilization

Fig. 9 Aurora MySQL 100 clients trial. This figure shows event
counts on the Y-axis in per minute buckets and the X-axis reflects
time.

decreases with an intersection with Lambda insertion latency on the
order of 10" client connections. The MySQL configuration that used
Lambda functions to insert data did not change significantly with
respect to the number of clients within the tested range, while the
DynamoDB insert latency had an inverse relationship with the

Journal of Computing and Information Science in Engineering

Decreasing Client Load Execution Order (1 std)

-%- DynamoDB Insert Latency
-¥- Lambda Insert Duration

,_.
o
L
-
7
/

= =
N -
L L
’
/
/
/
’
/
’
’
/
—_——
-
-,
-,

Time (milliseconds)
=
-] [=]
L)
]
P

(=
L
.

\

&
L
o
1
I
I
]
—_——
\
\
\
\
\

100 10! 102

Connected Clients
Fig. 10 MySQL and NoSQL isolated latency—decreasing load.
This figure shows the end-to-end latency of the system from
message transmission to message write completion on the
Y-axis in milliseconds, plotted over a range of number of con-
nected clients on the X-axis. Error bars reflect one sample stan-
dard deviation.

Increasing Client Load Execution Order (1 std)

-¥- DynamoDB Insert Latency
-%- Lambda Insert Duration

=
e}
1
——
/
7

=

(=]
L

v
7/

._.
-

1
7
==

=
N
1
’

(=
(=]
1
I
I
!
I
|
ﬁﬁy
al
/7

Time (milliseconds)

10° 10! 10?
Connected Clients

Fig. 11 MySQL and NoSQL isolated latency—increasing load.
This figure shows the end-to-end latency of the system from
message transmission to message write completion on the
Y-axis in milliseconds, plotted over a range of nhumber of con-
nected clients on the X-axis. Error bars reflect one sample stan-
dard deviation.

number of connected clients. Metrics were retrieved from AWS
CloudWatch via the pyTHON API using scripts.

While the performance measurements in this work found an
intersection of latency tradeoff between DynamoDB NoSQL and
Aurora MySQL, several additional factors are practical in the
design of an IoTfM or IoT system that can have greater impact.
By isolating the differences in latency due to choice of database
as a relatively small component of the overall latency of an
MQTT message’s path, the ability to make architectural choices
of database technology can be more heavily influenced by other
factors, such as price, query flexibility, and ease of integration.

The results support the value of insights provided through client
load testing in the prototyping phase, as the latency and throughput
respond differently to chosen database technologies as the number
of clients increases from the range of 10 to 100. While many
systems are tested for a proof of concept using only a small

DECEMBER 2022, Vol. 22 / 060901-9

number of instrumented assets, simulated testing with larger
numbers of clients can reveal optimizations that would otherwise
not be noticed until dozens of machines were already connected
to an implemented system. Using data from already instrumented
assets, the results show that the response of database write
latency to increase scale can be mapped prior to onboarding
larger numbers of assets. The ability to make informed decisions
for architecture with respect to latency is especially important for
warning systems, where latency can be critical. For small
numbers of test clients, warnings would be received quickly, but
as the number of clients increases, the choice of optimal database
system becomes more complex.

The decoupled architecture used in this work was found to
provide effective interoperability between both the DynamoDB
and RDS MySQL databases and the IoT traffic ingestion over
MQTT. While an integrated IoT hub rule was used to write to Dyna-
moDB, the initial traffic ingestion occurred for both test bench con-
figurations over MQTT. The use of MQTT between loosely coupled
components in the data processing pipeline could enhance the appli-
cability of this work across different domains, as MQTT messages
are extremely lightweight and can be sent from a variety of sources
including other cloud providers, dedicated servers, and embedded
devices. The ability to easily swap components within the architec-
ture made isolating the database component significantly more
accessible when compared to bespoke, tightly coupled pipelines.

For installations that adopt a decoupled, standardized architec-
ture, the ability to quickly redirect IoT traffic to new destinations
could enable faster upgrades and access to a wider range of technol-
ogies. Additionally, by using a standardized communication proto-
col between stages in data processing, multi-cloud configurations
could be significantly easier to deploy. Since different cloud provid-
ers adjust pricing and deploy new features independently, users of
the decoupled architecture could stand to gain more quickly from
advances on any cloud provider with potentially drastic reductions
in cost of adoption.

The results illustrate comparable performance in terms of latency
across the NoSQL and MySQL implementations. As a decoupled
architecture was used, the full end-to-end system’s latency was
found to converge for simulated client loads less than 500 clients,
and the convergence was found to occur at these load parameters
at trial durations greater than 100 s. The individual performance
results from DynamoDB NoSQL confirmed write unit capacity
expectations for provisioning throughput, and auto-scaling and
burst behaviors were observed to exhibit limited momentum in pro-
visioned throughput. The MySQL Aurora isolated insertion testing
was bottlenecked by Lambda executions, as the requirement to
trigger Lambda functions from IoT Core rules added an order of
magnitude of latency to the system. MySQL Aurora insertions
occurred with latency of less than 0.25 ms, while the Lambda invo-
cation and execution introduced greater than 4.0 ms of latency.
Both increasing and decreasing client load execution orders of sim-
ulated client loading trials indicated that the DynamoDB insertion
latency began higher than the Lambda but decreased as client
load increased. After an intersection between 10" and 10* simulated
clients, the Lambda configuration maintained its latency, while
DynamoDB performed with approximately 50% less latency.

5 Future Research

The work presented here can be expanded in several directions to
further enhance and explore the field of IoTfM. Characterizing the
impact of instance resources such as random access memory and
central processing unit (CPU) core count could provide greater
insights into vertical scaling capabilities of these decoupled archi-
tectures, revealing optimal points to relieve bottlenecks. This
work was limited to only two kinds of databases, both of which
were managed AWS offerings. Broadening this work to include
both other cloud providers and a greater variety of database technol-
ogies would lead to a more holistic picture of databases in IoTfM.

060901-10 / Vol. 22, DECEMBER 2022

Applying the same sampling and simulation methods from this
work to other manufacturing firms’ historical data sets could
provide insights into different industrial data gathering practices
that would greatly contribute to the ability to generalize the perfor-
mance data acquired through these experiments.

5.1 Query Flexibility. As in the practical experiment con-
ducted and described above, the choice of database architecture is
not differentiated most significantly by performance when applied
to the industrial IoT. The ability to flexibly query data is a feature
that is far more developed and advanced on RDBMS systems like
MySQL. Flexible queries can be instrumented on top of NoSQL
databases via extract transform load pipelines or distributed Big
Data approaches, such as Hadoop. For a streamlined architecture
in line with the literature, the number of discrete data storage loca-
tions is minimized, and systems organically grow from proof of
concept and pilot installations. In these scenarios, MySQL’s combi-
nation of established high vertical scaling write speed limit and
facilitation of higher level analytics beyond simple data archiving
and arithmetic-based stream metrics allows for faster realization
of higher level CPPS systems.

5.2 Latency Sensitivity. Latency from the JMeter EC2 to the
IoT Core was negligible throughout the experiments, since the
JMeter instance was in the same AWS region as the IoT Core end-
point, and it was connecting within AWS instead of being transmit-
ted from a manufacturing location. This physical co-location is what
made it possible to execute the experiments without the introduction
of latency noise from outside communications and network traffic
that could potentially have vastly greater influence on the metrics
measures than the ones investigated in this work. Network and
internet service provider offerings could influence the maximum
viable throughput from a CPPS when transmitting payloads to the
cloud, as would any bottlenecks in factory floor networking. In
many manufacturing scenarios, wireless communication over
WIFI or Bluetooth is used as well, which introduces another
order of magnitude of latency variability. Examining the system-
level effects of additional sources of latency such as shared
network resources and environment-wide trends in network conges-
tion is another looming problem in need of precise characterization
when narrowed to the [oTfM field.

5.3 Architectural Scaling. The high-fidelity simulated indus-
trial MQTT sensor payloads and publish characteristics validate a
more specialized testing model to potentially allow higher resolu-
tion data on future results compared to generalized DBMS through-
put and latency comparisons. Due to the MQTT pub/sub
architecture, even for scenarios in which a single MySQL instance
would saturate its write capacity, MySQL could be used by splitting
data from different assets into separate databases or leveraging
multi-master clusters. By horizontally scaling the IoT architecture
itself using multiple databases subscribed to distinct topics instead
of scaling the database management system, CPPS data throughput
bottlenecks can be fully avoided. Fitting a multi-database system in
which databases are subscribed to topics over MQTT could benefit
from leveraging read replicas to allow analytics to run on separate
replicas of the databases without impacting the CPU load of the
write instance, maximizing theoretical write throughput.

6 Limitations

6.1 Instance Types. Since results were derived using particu-
lar instance sizes and configurations, the results have limited predic-
tive power when other sized instances are used. Memory and CPU
limitations on the EC2 instance used to execute the JMeter tests
were prohibitive in that it limited tests to below 500 connected
clients. While the work aimed to initially explore larger numbers
of clients, the simulation framework itself experienced throughput

Transactions of the ASME

limitations that necessarily capped the maximum number of clients.
Differently optimized instances could present a different set of tra-
deoffs, such as higher network connectivity speeds or more optimi-
zations toward high thread count computation and parallel
processing.

6.2 Uncertainty. While every effort was made to reduce
uncertainty in this work, higher numbers of connected clients
beyond 500 connected clients contained too much uncertainty to
analyze any trends. Isolating trial conditions with respect to trial
duration was especially challenging. In this work, only trials in
which data points converge to within a single standard deviation
were used. The largest source of uncertainty that was eliminated
is wireless connection, which can be present in manufacturing set-
tings. The trials were carried out within the same AWS region to
reduce latency uncertainty as well.

6.3 Cloud and Database Technologies. Given the vast array
of potential database storage technologies, configurations, and
hosted services, the work presented here characterizes a particular
use case through AWS integrated offerings. Other cloud providers
offer different technology stacks and integrations that fundamen-
tally alter both throughput and latency results. Only one platform,
AWS, was used to generate the results in this work. Other cloud
providers could implement the same technologies in different
ways or allow different levels of user control granularity for config-
uration parameters that were used in this work. Integrated monitor-
ing and metrics interfaces are implemented differently across
providers, and methods for gathering the same results outside
AWS are not investigated in this work.

6.4 Manufacturing Internet of Things Data Set. The data set
used for characterizing manufacturing data used for this work is not
a generalized IoTfM data set, and provides a granular, real-world
example at the cost of broader scope. The data set is used to
ensure fidelity with authentic manufacturing, sensor readings, and
conditions. Manufacturing data vary in characteristics, format,
and metadata across installations, industries, and environments.
The results of this work are necessarily limited to the data that
were examined within the manufacturing industry.

6.5 Cloud Services Offerings. In the emerging space of cloud
services and hosted databases, services and their availability are reg-
ularly subject to change. Future versions of technology offerings
can fundamentally alter the functionality and add or remove fea-
tures. Accounting for long-term trends in feature development is
not examined in this work, and all technologies discussed are
subject to change.

6.6 Cost and Pricing. Cost and pricing analysis is not
included in this report, as it is rapidly evolving in the cloud and
IoTaaS space. While theoretical throughput optimizations are prom-
ising and enticing, the cost analysis for implementing many of the
systems and methods demonstrated in this work can vary by
billing model and cloud provider. The sensitivity of private sector
implementations to pricing and cost is not examined nor accounted
for in this work.

6.7 Environmental Impact. The environmental impact of IoT
databases and data ingestion pipelines is not examined in this work.
Cloud technology makes it much easier to use a tremendous volume
of computational resources, but also can result in a more efficient
reuse of servers as idle resources are able to be repurposed by
another user. As the volume of data from the IoT grows, the envi-
ronmental cost of storing such data efficiently can be impacted by
the format and system used to store the data. Higher-availability
data systems tend to consume more electricity and have larger

Journal of Computing and Information Science in Engineering

impacts on the environment. Longer-term storage can reduce
responsiveness of data querying but provide potentially dramatic
energy savings.

7 Conclusions

The ability to convert ingested data flexibly into higher level
insights via dynamic access patterns makes MySQL a strong fit
for IoT for manufacturing applications using AWS. Direct write
speed and latency at scale yield better performance over 200 k
message writes per database per second for NoSQL as compared
to sqQL, yet the impact could be fully alleviated by splitting data
writing across multiple databases using a decoupled architecture
with multiple write database instances or multi-master MySQL
cluster configurations. The capability to derive complex, dynamic
insights from sQL aligns best with Industry 4.0 objectives of smart
manufacturing by allowing flexibly defined access patterns, while
NoSQL requires well-defined access patterns. Stream and direct
storage recall without analytics implementations are better served
by the scalability of NoSQL. NoSQL can facilitate lower-level
data storage but requires additional technologies to explore higher
level insights, and NoSQL can require knowledge of necessary
access patterns in advance. The main contributions of this work
can be summarized as follows:

(1) Simulated client testing in a decoupled I0TfM architecture
reveals bottlenecks that are not inherent to any individual
layer within the architecture and could be undetectable at
the prototype scale, yet emerge at production scale. Results
show that it can be used for benchmarking vastly different
database technologies using a common set of metrics, such
as latency and throughput.

(2) The process for extracting and generating simulated IoTfM
clients that generate randomized traffic while maintaining
mean characteristics from a pre-defined backlog of IoT
records is demonstrated to provide a testing environment
simulating production workloads compared to directly
stress-testing the database layer itself.

(3) An approach for measuring database latency and throughput
metrics from a decoupled IoTfM architecture was detailed in
this work. Results support that the metrics gathered are able
to provide non-obvious insights into performance tradeoffs
within the database layer of the decoupled architecture. Iso-
lating the latency within the database layer could be used to
inform architectural decisions and evaluate potential alterna-
tive database technologies for future research on IoTfM
system configuration.

7.1 Restatement of Research Questions. This work aims to
address these needs with the following research objectives:

(1) Characterizing the scalability behaviors of NoSQL and sqQL
databases in the context of existing CPS and CPPS
frameworks.

(2) Enumerating scaling factors and bottlenecks encountered
during synthetic load tests seeded with data from a major
US manufacturing firm.

7.2 Answers to Research Questions. The results from this
work can be applied to answer the research questions previously
enumerated:

(1) The scalability of both NoSQL and sqQL databases examined
in this work fall within the first two layers of the 5Cs
model. The scalability of these systems is critical to
enabling higher levels of the model to develop. Within a
decoupled architecture, the ability to interchange databases
allows for greater flexibility, and the work presented here
allows the evaluation of DBMS with respect to perfor-
mance via latency and throughput analysis. The scalability

DECEMBER 2022, Vol. 22 / 060901-11

of both NoSQL and sqL databases can be compared over
increasing client load conditions using simulated clients
to determine performance differences. With respect to
enabling higher levels of the 5Cs CPS model, MySQL’s
ability to derive higher level insights and enforce data con-
straints can offer more towards analytics. NoSQL can be
optimized for lower latency in use cases that don’t rely
on flexible access patterns.

(2) Scaling bottlenecks were encountered both for the synthetic
load testing system itself, and with the decoupled architecture
model in both database configurations. For the NoSQL
DynamoDB configuration, the most prevalent bottleneck
observed was the write capacity unit limitation, in which
insufficient write capacity units were provisioned, and the
throttled insertion requests rapidly grew. For the MySQL
configuration, the Lambda function insertion stage was the
primary bottleneck, as it introduced cold starts to initializa-
tion of the system and with each increase in load. The
MySQL configuration also was subject to AWS account
limits on maximum concurrent Lambda function invoca-
tions; however, this limit can be raised via support tickets.
The load testing instance itself experienced a bottleneck in
simulated client thread execution for the trials with 500
clients, which could be resolved with vertical scaling via a
larger provisioned EC2 instance.

Acknowledgment

This work was supported by the Department of Energy Advanced
Manufacturing Office through award DE-EE0008303.

Conflict of Interest

There are no conflicts of interest.

Data Availability Statement

The datasets generated and supporting the findings of this article
are obtainable from the corresponding author upon reasonable
request.

References

[1] Kagermann, H., and Wahlster, W., 2016, Industrie 4.0—Germany Market Report
and Outlook, Germany Trade & Invest (GTAI), Berlin, Germany, pp. 1-16.

[2] Nguyen, V., and Dugenske, A., 2018, “An Internet of Things for Manufacturing
(IOTFM) Enterprise Software Architecture,” Smart Sustain. Manuf. Syst., 2(2),
pp. 177-189.

[3] Mourtzis, D., Vlachou, E., and Milas, N., 2016, “Industrial Big Data as a Result of
IoT Adoption in Manufacturing,” 5th CIRP Global Web Conference Research and
Innovation for Future Production, Patras, Greece, Oct. 4—6, pp. 290-295.

[4] MQTT: The Standard for IoT Messaging, 2020. https:/mqtt.org/

[5] Soni, D., and Makwana, A., 2017, “A Survey on MQTT: A Protocol of Internet of
Things (IoT),” International Conference On Telecommunication, Power Analysis
And Computing Techniques (ICTPACT-2017), Chennai, India, Apr. 6-8, pp.
173-171.

[6] Yokotani, T., and Sasaki, Y., 2016, “Comparison With HTTP and MQTT on
Required Network Resources for IoT,” 2016 International Conference on

060901-12 / Vol. 22, DECEMBER 2022

Control, Electronics, Renewable Energy and Communications (ICCEREC),
Bandung, Indonesia, Sept. 13-15, IEEE, pp. 1-6.

[7] Shelby, Z., Hartke, K., and Bormann, C., 2014, “The Constrained Application
Protocol (CoAP),”, Internet Engineering Task Force (IETF) RFC-7252,
Fremont, CA, pp. 1-112.

[8] Vinoski, S., 2006, “Advanced Message Queuing Protocol,” IEEE Internet
Comput., 10(6), pp. 87-89.

[9] Naik, N., 2017, “Choice of Effective Messaging Protocols for IoT Systems:
MQTT, CoAP, AMQP and HTTP,” 2017 IEEE International Systems
Engineering Symposium (ISSE), Vienna, Austria, Oct. 11-13, IEEE, pp. 1-7.

[10] Hayes, B., 2008, “Cloud Computing,” Commun. ACM, 51(7), pp. 9-11.

[11] Mell, P., and Grance, T., 2011, “The NIST Definition of Clouding Computing
Recommendations National Inst. of Standards and Technology,” NIST Spec.
Publ., 145, p. 7.

[12] Miller, M., 2008, Cloud Computing: Web-Based Applications That Change the
Way You Work and Collaborate Online, 1st ed., Que Publishing, Indianapolis,
IN, pp. 1-312.

[13] Amazon Web Services, https:/aws.amazon.com/, Amazon Web Services, Inc.,
Seattle, WA.

[14] Microsoft Azure: Cloud Services, https:/azure.microsoft.com/en-us/, Microsoft
Corporation, Redmond, WA.

[15] Google Cloud Platform, https:/cloud.google.com/, Google LLC, Mountain
View, CA.

[16] Prodan, R., and Ostermann, S., 2009, “A Survey and Taxonomy of Infrastructure
as a Service and Web Hosting Cloud Providers,” 2009 10th IEEE/ACM
International Conference on Grid Computing, Banff, Alberta, Canada, Oct. 13—
15, IEEE, pp. 17-25.

[17] Bonci, A., Pirani, M., and Longhi, S., 2016, “A Database-Centric Approach for
the Modeling, Simulation and Control of Cyber-Physical Systems in the
Factory of the Future,” IFAC-PapersOnLine, 49(12), pp. 249-254.

[18] Lee, J., Bagheri, B., and Kao, H.-A., 2015, “A Cyber-Physical Systems
Architecture for Industry 4.0-Based Manufacturing Systems,” Manuf. Lett., 3,
pp. 18-23.

[19] Monostori, L., 2015, “Cyber-Physical Production Systems: Roots From
Manufacturing Science and Technology,” Automatisierungstechnik, 63(10),
pp. 766-776.

[20] Snijders, C., Matzat, U., and Reips, U.-D., 2012, “Big Data: Big Gaps of
Knowledge in the Field of Internet Science,” Int. J. Internet Sci., 7(1), pp. 1-5.

[21] Plattner, H., 2009, “A Common Database Approach for OLTP and OLAP Using
an In-Memory Column Database,” Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIGMOD ‘09, Providence,
RI, June 29-July 2, pp. 1-2.

[22] Chaudhuri, S., and Dayal, U., 1997, “An Overview of Data Warehousing and
OLAP Technology,” ACM Sigmod Record, 26(1), pp. 65-74.

[23] Kim, J. H., 2017, “A Review of Cyber-Physical System Research Relevant to the
Emerging It Trends: Industry 4.0, IoT, Big Data, and Cloud Computing,” J. Ind.
Inf. Integr., 2(2), p. 175001.

[24] Egenhofer, M. J., 1994, “Spatial SQL: A Query and Presentation Language,”
IEEE Trans. Knowl. Data Eng., 6(1), pp. 86-95.

[25] Stonebraker, M., 2010, “SQL Databases v. NoSQL Databases,” Commun. ACM,
53(4), pp. 10-11.

[26] Rautmare, S., and Bhalerao, D., 2016, “MySQL and NoSQL Database
Comparison for IoT Application,” 2016 IEEE International Conference on
Advances in Computer Applications (ICACA), Tamilnadu, India, Oct. 24, pp.
235-238.

[27] Fatima, H., and Wasnik, K., 2016, “Comparison of SQL, NoSQL and NewSQL
Databases for Internet of Things,” 2016 IEEE Bombay Section Symposium
(IBSS), Baramati, India, Dec. 21-22, pp. 1-6.

[28] Cattell, R., 2011, “Scalable SQL and NoSQL Data Stores,” ACM Sigmod Record,
39(4), pp. 12-27.

[29] Housley, R., Ford, W., Polk, W., and Solo, D., 1999, Internet X. 509 Public Key
Infrastructure Certificate and CRL Profile, Technical Report, RFC 2459.

[30] Apache Kafka, Apache Software Foundation, https:/kafka.apache.org/

[31] Thein, K. M. M., 2014, “Apache Kafka: Next Generation Distributed Messaging
System,” Int. J. Sci. Res. Eng. Technol., 3(47), pp. 9478-9483.

[32] Tdrneberg, W., Chandrasekaran, V., and Humphrey, M., 2016, Experiences
Creating a Framework for Smart Traffic Control Using AWS IoT.

[33] Apache JMeter, https:/jmeter.apache.org/, The Apache Software Foundation.

Transactions of the ASME

http://dx.doi.org/10.1520/SSMS20180026
https://mqtt.org/
https://mqtt.org/
http://dx.doi.org/10.1109/MIC.2006.116
http://dx.doi.org/10.1109/MIC.2006.116
http://dx.doi.org/10.1145/1364782.1364786
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://cloud.google.com/
https://cloud.google.com/
http://dx.doi.org/10.1016/j.ifacol.2016.07.608
http://dx.doi.org/10.1016/j.ifacol.2016.07.608
https://doi.org/10.1016/j.mfglet.2014.12.001
http://dx.doi.org/10.1515/auto-2015-0066
http://dx.doi.org/10.1145/248603.248616
https://doi.org/10.1142/S2424862217500117
https://doi.org/10.1142/S2424862217500117
http://dx.doi.org/10.1109/69.273029
http://dx.doi.org/10.1145/1721654.1721659
http://dx.doi.org/10.1145/1978915.1978919
https://kafka.apache.org/
https://kafka.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/

	1 Introduction
	2 Background
	2.1 Databases

	3 Approach
	3.1 Data
	3.2 Data Set Schema
	3.3 Simulated Clients
	3.3.1 Test Plan

	3.4 MQTT and Database Ingest Pipelines
	3.5 MySQL Aurora Database
	3.6 DynamoDB Database
	3.7 Latency Measurement

	4 Results and Discussion
	4.1 End-to-End Characterization
	4.2 DynamoDB Writing
	4.3 MySQL Aurora Writing
	4.4 NoSQL and MySQL Load Testing

	5 Future Research
	5.1 Query Flexibility
	5.2 Latency Sensitivity
	5.3 Architectural Scaling

	6 Limitations
	6.1 Instance Types
	6.2 Uncertainty
	6.3 Cloud and Database Technologies
	6.4 Manufacturing Internet of Things Data Set
	6.5 Cloud Services Offerings
	6.6 Cost and Pricing
	6.7 Environmental Impact

	7 Conclusions
	7.1 Restatement of Research Questions
	7.2 Answers to Research Questions

	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

