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This research aims to augment human cognition through the advancement and automation
of mindmapping technologies, which could later support human creativity and virtual col-
laboration. Mindmapping is a visual brainstorming technique that allows problem solvers
to utilize the human brain’s ability to retrieve knowledge through similarity and association.
While it is a powerful tool to generate concepts in any phase of s or design, the content of
mindmaps is usually manually generated while listening or conversing and generating
ideas, requiring a high cognitive load. This work introduces the development of a
speech-driven automated mindmapping technology, called Speech2Mindmap. The specifics
of the Speech2Mindmap algorithm are detailed, along with two case studies that serve to
test its accuracy in comparison to human-generated mindmaps, using audio recorded
speech data as input. In the first case study, the Speech2Mindmap algorithm was evaluated
on how well it represents manually generated human mindmapping output. The second case
study evaluated the reliability of the Speech2Mindmap algorithm and examined the best
performing methods and conditions to achieve the greatest similarity to human-generated
mindmaps. This research demonstrates that the Speech2Mindmap algorithm is capable of
representing manually generated human mindmapping output and found the best perform-
ing methods and conditions to generate a mindmap that is 80% similar, on average, to
human-generated mindmaps. [DOI: 10.1115/1.4052282]
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1 Introduction
As science and technology advances, the importance of creativity

in engineering design increases [1–3], but it seems harder to come
up with novel or creative ideas. Mark Twain argues that “There is
no such thing as a new idea. We simply take a lot of old ideas
and put them into a sort of mental kaleidoscope.” One of the
most innovative people of all time, Steve Jobs, once said “Creativity
is just connecting things.” Mindmapping is a very popular brain-
storming method that connects and clusters multiple ideas to gener-
ate new innovative ideas.
Mindmapping is a visual brainstorming technique that allows

problem solvers to utilize the human brain’s ability to retrieve
knowledge through similarity and association. While it is a power-
ful tool to generate concepts in any phase of problem-solving or
design, the content of mindmaps is usually manually generated
while listening or conversing, inducing a high cognitive load for
the documentarian(s)—who must split their attention between the
creation of the mindmap artifact and the generation of ideas. The
end goal of the work presented here is to augment human cognition
through the advancement and automation of mindmapping technol-
ogies, which will enhance and enable human creativity and virtual
collaboration while saving energy and time. The specific objective
of this work is to automatically generate mindmaps of team brain-
storming sessions based on audio speech data. The contribution
of the work presented here is the demonstration of a new technique

for completely automating mindmapping based solely on audio data
of brainstorming sessions, with preliminary validation of fidelity to
human-generated mindmaps through computational comparison
case studies. Integrating speech into automated mindmapping tech-
nology opens up opportunities for a real-time responsive mindmap-
ping tool which will enable capturing ideas synchronously, ideas
that might be otherwise lost in the process of manual documentation
or conversational flow. This work presents a novel method to
develop a mindmap from a conversational transcript, text that is
not necessarily grammatically well-articulated. The scope of this
study does not include an evaluation of the technology’s effects
on design cognition, but this will be evaluated in future work.

2 Background
2.1 Introduction to Mindmapping. Mindmapping was first

introduced by Tony Buzan in the 1970 s [4]. T. Buzan and
B. Buzan describe the mindmap as a tool to help capture one’s
thinking process or mental model through representation with
words, drawings, and colors [4]. A mindmap starts with a main
keyword or idea in its center and then branches out to other
related keywords or ideas forming a hierarchical structure. Buzan
and Buzan suggest using a single word for each related idea, creat-
ing flexibility for explorative thinking, and one pictorial representa-
tion of each related idea, engaging human vision to expand
knowledge retrieval [4,5]. Mindmapping enhances the cognitive
abilities to think logically, memorizing, retrieving memory, learn-
ing, drawing associations, and thinking creatively through graphical
visualization [4,6] Even with these advantages, many people are
hesitant to use mindmaps while brainstorming because of the
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perceived amount of mental effort and artistic skill required for
illustrating ideas [7].
Mindmapping employs information visualization techniques to

allow humans to use perception to capture information, recognize
patterns, compare similarities and differences, draw associations,
communicate ideas, and generate new ideas or knowledge. Mind-
mapping is a popular method of enhanced brainstorming and
concept generation among designers and researchers [8]. As an
example, consider the scenario below. A team is working to gener-
ate early-stage concepts for the following design problem: “Design
a system to detect a golf ball hit from the tee box” [9]. With classical

brainstorming [10], the ideas from the team might resemble a list
like the one in Fig. 1.
Now consider the same design problem, but using a mindmap to

generate concepts, as depicted in Fig. 2 [9]. By recognizing patterns
and groupings in the ideas generated, team members can generate
new interconnected concepts, exploring the idea space more broadly
than classical brainstorming. Mindmapping helps humans to under-
stand and to solve problems in a logical and structural manner by
visually dividing a central idea into its components [11]. It has been
shown to be an effective tool for taking notes, learning new knowl-
edge, organizing structural data, summarizing documents, analyzing
problems, finding new inspiration, and generating new ideas [8,11–
15]. With the abundance of data and complexity of knowledge from
modern technology, individuals lacking resource-based learning tech-
niques can experience cognitive overload, resulting in an inability to
process information [16]. According to a study of the impact of cog-
nitive load on creative thinking performance by Redifer et al.,
higher cognitive load in participants negatively impacted their creative
thinking performance [17]. Using automated mindmaps during brain-
storming or idea generation reduces cognitive load by enabling an
automated graphical overview of one’s thought process with verbal
and/or visual representations, presenting associations and relation-
ships between ideas, expanding one’s working memory through the
recall of ideas instead of memorizing, and by relieving worries
related to visual aesthetics and drawing ability [8,16].

2.2 Mindmapping Technology. In their simplest form, mind-
maps can be generated manually on paper. However, paper-based
and whiteboard mindmaps are restrictive because they do not

Fig. 1 Classical Brainstorming Example Result for the design
problem: “Design a system to detect a golf ball hit from the tee
box” [9,10]

Fig. 2 Mindmapping example result for the design problem: “Design a system to detect a golf ball hit from the tee box” [9,10]
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enable re-spacing of contentwhen certain areas become densely pop-
ulated. Writing each idea or concept on a sticky note is a common
workaround for low-tech mindmaps, as it allows adjustable
spacing without having to redraw an entire mindmap. The current
consumer market has a number of technologies that support digital
mindmapping. Figure 3 below provides a summary of these technol-
ogies, characterizing their capabilities and availability to the public in
comparison to traditional, non-digital methods for mindmapping.
Some digital mindmapping tools allow multiple users to edit the

mindmap simultaneously or synchronously. However, most of
these tools do not fully support real-time synchronous editing,
have delays or are not able to detect conflicting input between
users. There has been a development of a few mindmapping tools
that incorporate a semantic network database. ThinkMap has a
synonym suggestion feature that is offered by VisualThesaurus
[18], and a mindmap algorithm developed by Chen et al. incorpo-
rates ConceptNet [19] so that the algorithm serves as a computer
collaborator to create a mindmap with a human user [20]. Most
digital mindmapping tools that support synchronous multi-user
editing, with the exception of SharedMind [21], are not free nor
open source. Accessibility and cost of design tools is an important
factor in democratizing design. This may be of interest as we move
toward more open access journals, open sharing of data sets and
code, and even open sharing of tools and software.
Lin and Faste identify the speed of workflow and efficiency as a

primary advantage of digital mindmapping over hand drawn maps
[8], as digital mindmapping utilizes a keyboard and mouse to
input and organize data. Most digital mindmapping technology
allows users to use shortcut keys, colors, font size, and font style

in order to design themes based on their needs. Shih et al. recognize
that electronic brainstorming systems, such as digital mindmapping
software, tend to benefit groups, eliminating production blocking
and evaluation apprehension, which enables the generation of
more creative ideas; this is due to the ability to work individually,
to input data in parallel, and to enter ideas anonymously [22].
Although current electronic brainstorming systems might facilitate
the generation of more ideas, some studies show they take more
time than traditional techniques; users remained more satisfied
with a traditional, face-to-face brainstorming method over current
electronic brainstorming options that were tested [23,24].
Based on the benchmarking of digital and non-digital mindmap-

ping techniques shown in Fig. 3, there is a clear opportunity to
enhance the functionality of an integrated mindmapping technology
to better support collaborative cognition.

2.3 Automated Mindmapping Technology. Few attempts
have been made to develop automated mindmapping technology
by researchers. Elhoseiny and Elgammal developed a framework
algorithm that takes plain text and generates a single or multi-layer
mindmap by using semantic processing, concept ontology process-
ing, natural language processing, and an image web searching algo-
rithm, in order to present a summary and visualize the information
of the text [7,11]. The study was limited to English text about his-
torical figures with a maximum length of 250 words. Abdeen et al.
present automatic mindmap generating software that uses a mor-
phological analyzer, parser, syntax analyzer, semantic analyzer,
and mindmap converter to convert English text into a single layer

Fig. 3 Benchmarking current mindmapping technology
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mindmap, which does not have any keyword clustering or catego-
rization [25]. The limitations of this software are that it uses short
text and can only generate a single layer mindmap with limited
natural language processing technology. Neither approach pro-
cesses text that is derived from the speech of multiple team
members, which is a significantly different and difficult challenge.
Kudelic et al. developed an automaticmindmapgenerator that uses

a text-mining algorithm to parse and extract various lengths and
topics of English text sources [12,13]. The mindmapping software
can generate a mindmap within seconds, regardless of length and
source of the text, such as a webpage or .doc file. The software was
tested for speed, accuracy of recognizing text topics, selection of
the correct keyword for the node, and drawing relevant associations
among nodes. Kudelic et al. note the software works satisfactorily
but has inaccuracies in selecting the correct keyword for the node,
connecting related nodes, and engaging with synonyms. Like other
mindmapping technology, this algorithm did not process synchro-
nous, multi-person speech data. Beel and Langer present potential
opportunities and possible applications of mindmaps for use in
expert search methods, summarizing documents, keyword-based
search engines, and recommending system mechanisms [15].
To automatically generate a record (in this case, a mindmap) of a

conversation, meeting, or team brainstorming session, a number of
technologies must be employed. First, a reliable Speech-To-Text
(STT) transcription is needed, followed by text processing to
extract meaningful keywords and associations among keywords
from the text. Finally, a visualization technique is needed to
create a meaningful structure showing the relationships among
the textual content. Technologies associated with each of these
components are discussed next.

Speech-to-Text. Hartman discusses several apps on smartphones
or tablets that can transcribe voice data into text without the need to
create an audio file, such as Dragon, QuickVoice2Text, and Speech
Notes. He suggests that these STT apps could largely improve the
productivity of occupational therapy practice [26]. Google Cloud,
Apple Siri, Microsoft Azure, and Amazon AWS are all commercial
systems that interpret voice data for processing into actions or tran-
scription into text. Speech recognition technology is on the rise and
continuing its refinement. In this study, most popular STT technol-
ogies, such as Google Cloud, Microsoft Azure, and Amazon AWS,
will be compared.

Keyword Extraction. Keyword extraction techniques automati-
cally identify a word or a phrase that sufficiently summarizes or
describes the subject of a given sentence or document. Keyword
extraction and document summarization techniques are used fre-
quently, with various approaches and methods as shown in Fig. 4
[27,28]. This research will be only focusing on unsupervised
keyword extraction since the mindmapping tool will be developed
as an unsupervised automated tool.

N-gram statistics, word frequency, term frequency-inverse docu-
ment frequency (TF-IDF) model, and PAT Tree are examples of
Simple Statistic Approaches. This is one of the simplest approaches,
as it does not require any training data. However, since it extracts a
keyword based on the frequency of the word, it tends to filter out the
actual keyword when the document is a professional text, such as
medical documents or technology-focused academic journals,
because the word appears only once or twice in the text [28,29].
One of the most common keyword extraction approaches is a Lin-
guistic Approach. This approach analyzes linguistic properties or
features of the words, sentences, and paragraphs in order to
extract relations and determine the keyword. As an example,
Cheong et al. used Subject–Verb–Object (SVO) triplet syntactic
rule to acquire a functional keyword from a plain text [30]. In
spite of its frequent use, this approach is very language dependent,
and targeted text needs to be carefully grammatically oriented.
Since, a mindmap is ultimately a graph that is structured with

keywords and branches, where keywords represent nodes (also
called vertices) and branches represent edges or arcs that connect
nodes in basic graph theory, it is more efficient to utilize applica-
tions and analyses that are graph network based. As the graph
network analysis has been used in a variety of fields of study, it
has also been increasingly used for modeling and analyzing
natural language [31–36]. Currently, Graph-based keyword extrac-
tion approaches are being explored among a number of researchers.
The graph-based data structure has the ability to follow semantic
and lexical memory representations closely through an encoding
of the natural meaning and cohesive structure of the corpus
[28,29,36–40]. A semantic network graph is structured with
nodes and edges, which represent words and associations among
words accordingly. Relations among words can be established by
co-occurrence, syntax, semantic similarity, and others [32]. There-
fore, the graph-based keyword extraction method can effectively
analyze and organize words, relationships, and structural informa-
tion of a given document mathematically.

Keyword to Structure. Computational text analysis tools, also
called natural language processing (NLP), can compute the similar-
ity between words, a quantification of semantic similarity that can
be used to associate words into categories. Graph-based data
mining approaches can be used for categorizing keywords. The
advantage of using a graph-based approach is that it will not only
provide keywords but also create a graphical structure that is used
to analyze keywords. Graph-based data mining can model relation-
ships and structural information effectively providing computation
related to term weight and ranking. This allows for better informa-
tion retrieval. For example, semantic network analysis is used to
visualize a patent database [34,35], to evaluate and represent the
interconnectivity of design ideas [41], and to explore and exploit
existing ideas to generate new ideas [42] by analyzing a graph-
based data structures that represent semantic relations between
words, concepts, and documents, using directed or undirected
graphs. Graphical representation of the data structure, the
mindmap, is built on the graphical structure that the graph-based
method provides. With the given structure and keywords, more
unrecognized connections between keywords will be explored
through co-occurrence analysis, keyword similarity comparison,
and semantic or lexical network analysis (WordNet and Concept-
Net) [20,31], and word vector representations analysis of Wikipe-
dia, Google news, or journal databases (Word2Vec and FastText)
[20,30,40]. These methods can also be used to suggest new key-
words or connections among existing keywords and networks.

3 Methodology
3.1 Unsupervised Automated Speech2Mindmap Algorithm

Framework. The objective of this research is to develop a method
to visualize ideas from a recorded speech data in a meaningful way,
to reduce designers’ cognitive load, and to enable more innovativeFig. 4 Various keyword extraction approaches
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inspiration. Generating a mindmap automatically, unsupervised,
using recorded speech data requires several stages of data process-
ing. Figure 5 presents the general outline of a data flow for the
Speech2Mindmap algorithm. It consists of the following five data
processing stages: (1) Speech-To-Text (STT), (2) text processing,
(3) keyword extraction, (4) keyword relations extraction, and (5)
network graph visualization.
Data processing starts with converting recorded speech data into

text. Converting speech data into text is one of the most important
processes since it is the basis for all other subsequent processes.
Speech recognition technology is continuing to be refined and
improved, but it has limitations currently. Since improving or devel-
oping speech recognition technology is not the objective of this
study, several STT products that are available today are tested and
compared.
There are several off-the-shelf STT products, including Google

Cloud, Microsoft Azure, Amazon AWS, IBM Watson, Dragon
SpeechRecognition, and others. Among these various STTproducts,
theproducts that provide real-timeSTTfeatures, available in a PYTHON

environment, andhave a large speechdatabasewith agood reputation
were selected, which were Google Cloud, Microsoft Azure, and
Amazon AWS, along with human transcription. A quantitative anal-
ysis was done to determine the best product to use in this study.
Processing speech-based text has significantly different chal-

lenges from processing written text. Due to the initial data input
being conversational speech data, it may contain grammar errors,
unnecessary words, or unnecessary phrases. Therefore, the tran-
scribed text goes through a basic text processing stage before it
goes through the keyword extraction process. The basic text pro-
cessing lemmatizes the text and removes all the stopwords and ono-
matopoeias, which helps to improve the extraction of more
important keywords from given input data.
A specific class of method called TextRank is used to extract key-

words and translate them into a mindmap. TextRank is an unsuper-
vised graph-based ranking algorithm that was first introduced by
Mihalcea and Tarau in 2004 [43]. A system like TextRank solves
the problem of terminology extraction and construction of domain-
specific dictionaries. TextRank is used to extract keywords from
each sentence, along with the relationship information of those key-
words in order to translate that information into a mindmap.
TextRank keyword extraction automatically identifies a set of

terms that best describe the document based on the words’ lexical

and syntactic features and co-occurrence relation, which is con-
trolled by the distance between word occurrences: two vertices
are connected if their corresponding lexical units co-occur within
a window of maximum N words, where N can be set anywhere
from 2 to 10 words. TextRank also uses a weighted ranking
system that is used to determine the most important word based
on the rank of the word in the corpus. The edges are weighted to
emphasize the importance and the strength of the relationship
between two words. The strength WS(Ni) between two words, Ni

and Nj, and weight wij are added to the corresponding edge with k
iteration is defined as follows [37]:

WS(Ni) = (1 − d) + d ∗
∑

NjϵIn(Ni)

wij ∗WS(Nj)∑
NkϵOut(Nj) wjk

(1)

where d is a damping factor (usually set to 0.85, but able to be set
between 0 and 1) [37,44]. The weights of the relationship can be
defined by measurements of co-occurrence, cosine distance, query-
sensitive similarity, and other methods. One of the advantages of
TextRank is the freedom in determining how weights are going to
be measured, as it is possible to define weights with combinations
of relationships. Another advantage is that TextRank is not lan-
guage dependent. It does not require deep linguistic knowledge;
therefore, it does not require pre-training to analyze a particular
natural language.
Based on extracted relations from TextRank, other methods to

define a relationship (edge) between two words, such as word simi-
larity value using WordNet and word vectorization using FastText,
are explored to optimize the relationship between words and to find
more meaningful and unrecognized relationships. Once these key-
words and edges have successfully and reliably been extracted,
visualization is achieved by employing an open source visualization
tool called NetworkX.

3.2 Evaluation Method. To test the reliability and the accu-
racy of the mindmap created by the Speech2Mindmap algorithm,
two different case studies were performed with Georgia Institute
of Technology’s engineering or design-related major students.
The purpose of these case studies was to investigate how similar
an unsupervised computer-generated mindmap can be to a human-
generated mindmap, as well as testing the reliability of the

Fig. 5 Speech2Mindmap Algorithm data flow diagram
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algorithm in generating a mindmap that is efficient and similar
enough to stand in for a human mindmap generator.

3.3 Case Study 1: Testing General Agreement Between
Human- and Computer-Generated Mindmaps

3.3.1 Participants. The Speech2Mindmap algorithm was eval-
uated on how well it represents a general thinking process of the
human brain while brainstorming and drawing a mindmap. In this
case study, a pre-recorded brainstorming session audio file was
used to create five human-generated mindmaps and a computer-
generated mindmap. The case study was conducted with five
student participants who were attending Georgia Institute of Tech-
nology, Atlanta, GA, USA. Participants were composed of one
female and four males who were all between the ages of 20 and
29 years, studying design or engineering, with two pursuing bach-
elor’s degrees and three pursuing PhDs.

3.3.2 Design Problem. The design problem used for this brain-
storming session was to “find ways to reduce hospital days for
patients with small bowel obstruction.”1 This pre-recorded brain-
storming session was selected because it had a clear design
problem statement, a proper interaction between group members,
and a mixture of general vocabulary and professional jargon.

3.3.3 Study Procedure. Five participants individually created
their own mindmap while listening to the same brainstorming
audio file. The computer-generated mindmap was created by
using the Speech2Mindmap algorithm, based on the same audio
file content. In order to test the reliability of the extraction of key-
words and keyword relations, human transcribed texts were used
to create the computer-generated mindmap, since the STT technol-
ogy is not perfect. The mindmaps created by five participants and
the algorithm are shown in the Appendix. The correlation
between five human-generated mindmaps and a computer-
generated mindmap was explored and analyzed. In order to test
how well a computer-generated mindmap can represent a human
brainstorming session, the computer-generated mindmap was eval-
uated to determine how many nodes and edges matched the human-
generated mindmaps.

3.3.4 Node to Node Comparison Procedure. The Speech2-
Mindmap algorithm was designed to discover nodes and edges that
humans might not have thought of or recognized. In the direct
node to node comparisons between the human and computer-

generated mindmaps, we looked at how much the computer-
generated mindmap included the nodes of the human-generated
mindmap, comparing exact word to word. For example, if a
computer-generated mindmap has all the nodes of a human-
generated mindmap, then it is considered a 100 percent match,
even if the computer-generated mindmap has extra nodes.

3.3.5 Edge to Edge Comparison Procedure. For the edge com-
parison in this study, the comparison was done between a single
(topological, not geometric) length edge of a human-generated
mindmap to an edge of a computer-generated mindmap with an
edge window size. An edge window size is an accepted edge
length that is considered as a match edge between two given
nodes. As shown in Fig. 6, the edge window size between nodes
A and B in the human-generated mindmap is 1, but in the computer-
generated mindmap, it is 3. In this study, while comparing edges
between the human-generated mindmaps and the computer-
generated mindmap with exact word matching nodes, an edge of
a computer-generated mindmap with a window size less than or
equal to 3 is accepted as a match. Therefore, even if both the human-
generated and the computer-generated mindmaps have nodes A, B,
and E, edges between nodes A and B were considered as a match.
However, the edges between the nodes A and E are not considered a
match, since the topological edge length between nodes A and E in
computer-generated mindmap is 4, compared to a topological
length of 1 in the human-generated mindmap.
To test the general agreement between the computer-generated

mindmap and the human-generated mindmaps, correlations
between the degree of agreement among the human-generated
mindmaps and the existence of the node or edge in computer-
generated mindmap were explored.

3.4 Case Study 2: Testing the Automated Mindmap
Algorithm’s Reliability

3.4.1 Participants. For the second case study, the reliability of
the Speech2Mindmap algorithmwas tested.A total of 13 groupswith
three people in each group and a total of 39 students participated. The
participants were majoring in design or engineering-related major at
Georgia Institute of Technology, Atlanta, GA. Participants were
composed of 18 men and 21 women, with 24 in Bachelors, five in
Masters, and ten in PhD degree programs. Twelve participants
were between the ages of 18 and 19 years, thirteen participants
were between the ages of 20 and 22 years, nine participants were
between the ages of 23 and 25 years, and five participants were
between the ages of 26 and 29 years. Participants were recruited on
a voluntary basis and received monetary compensation of $10
dollars for their involvement in this research.

Fig. 6 Edge comparison with edge window size 3: (a) human-generated mindmap and
(b) computer-generated mindmap

1https://www.youtube.com/watch?v=xhsmihuESKY&ab_channel=StanfordBio
design
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3.4.2 Study Procedure and Design Problem. Participants were
randomly assigned to groups of three to perform a 15-min brain-
storming session using a given design problem. The given design
problem was to “Design a system to detect a golf ball hit from
the tee box” [9,10]. Each group was asked to create their own
mindmap with as many ideas as they could think of in the given
time. While creating a mindmap, participants were asked to use
only the words they spoke and to use one word per node in the
mindmap. They were given a whiteboard wall, a stack of post-it
notes, and whiteboard markers, to use in generated in the
mindmap. The brainstorming sessions were videotaped and audio
recorded for further analysis. The final mindmaps generated by
the teams were photographed. Audio data of the sessions were post-
processed through the Speech2Mindmap algorithm to generate
unsupervised computer-generated mindmaps. To measure the simi-
larity and the reliability of the computer-generated mindmap, a
number of metrics were employed. The mindmaps that were gener-
ated by each group were analyzed and compared to the computer-
generated mindmaps to examine how many keywords and associa-
tions they had in common. Participants also filled out a feedback
survey about their basic demographics, their prior experience in
design, and their experience of the brainstorming session for this
research study.

3.4.3 Granular Similarity Metric. In both case studies, in order
to evaluate the similarity between a computer-generated mindmap
and a human-generated mindmap, a direct edge metric, called the
Granular Similarity, introduced by Jamieson and coauthors
[45,46], was used. According to Jamieson et al., the Granular Simi-
larity metric was able to identify the improvement of mindmap
similarity between two mindmap generators. The Granular Similar-
ity value (Eq. (2)) is a similarity value that is calculated by compar-
ing directly edge to edge and node to node between two mindmaps
[45,46]

Granular Similarity =
MatchE

MatchN +MatchE +MissN
(2)

The Granular Similarity value is calculated by statistical records
of matching nodes (MatchN), matching edges (MatchE), missing
nodes (MissN), and missing edges (MissE). The Granular Similarity
value, Eq. (2), was slightly modified to include all matching and
missing edges and nodes to calculate the similarity value that fit
the needs of this study, as shown in Eq. (3)

Granular Similarity =
MatchN +MatchE

MatchN +MatchE +MissN +MissE
(3)

The Granular Similarity value was calculated for each human
group generated mindmap, comparing to the corresponding
computer-generated mindmap. Also, average Granular Similarity
values among five mindmaps in the first case study and 13 groups
in the second case study were calculated to determine the general
agreement, performance, and reliability of the Speech2Mindmap
algorithm.

3.4.4 Comparison of Speech-To-Text Technologies. In order to
improve the average Granular Similarity value between a human-
generated mindmap and a computer-generated mindmap, different
variations of variables in Speech2Mindmap algorithm were
explored. First, different STT technologies were compared. As
mentioned earlier, the accuracy of the STT technology affects the
result of the computer-generated mindmap. The text that was tran-
scribed by each STT technology is the basis for the Speech2Mind-
map algorithm process. Therefore, the three most popular STT
technologies, Google Cloud, Microsoft Azure, and Amazon
AWS, were compared, along with human transcription.

3.4.5 Comparison of Keyword Extraction Damping Factor
Values. Another way to improve the average Granular Similarity
value between a human-generated mindmap and a computer-

generated mindmap is to improve the number of matching nodes.
In order to improve the number of matching nodes, the method of
extracting keywords has to improve in a way that mimics manually
generated human mindmapping output. As explained previously,
the Speech2Mindmap algorithm uses TextRank to extract key-
words. With the same given nodes and weights, as shown in
Eq. (1), the damping factor d is a variable that affects the result
of the keyword extraction. The damping factor is usually set to
0.85, but it can be set anywhere between 0.0 and 1.0 [37]. There-
fore, we tested how the damping factor of the TextRank affects
the average Granular Similarity value. The damping factor values
that were examined were 0.80, 0.9, and 1.0.

3.4.6 Comparison of Keyword Relation Extraction
Techniques. Similar to increasing the number of matching nodes,
increasing the number of matching edges improves the average
Granular Similarity value as well. The edge formation starts from
the backbone of the TextRank, a graph that is created based on
word co-occurrence. Besides the co-occurrence relation extraction
method, different relation extraction methods that will be combined
were explored to improve the overall relation extraction method in
the Speech2Mindmap algorithm. In this study, two additional
extraction methods, FastText and WordNet similarity value, were
explored with four different combinations as follows:

(1) Co-occurrence;
(2) Co-occurrence+WordNet;
(3) Co-occurrence+ FastText; and
(4) Co-occurrence+WordNet+ FastText.

4 Results and Discussion
After analyzing the mindmaps that participants created, we have

noticed that participants did not use the tree-like hierarchical struc-
ture but used many interconnected edges between nodes and the
same words in different areas of the mindmap. Therefore, the mind-
maps structures did not necessarily follow a tree-like hierarchical
structure, but rather had a hybrid of a tree-like structure and a
web-like structure, as shown in Fig. 7, which is very similar to
the computer-generated mindmap, as shown in Fig. 8.
As a first step to reduce the designer’s cognitive load induced by

the multitasking required to listen, document, and generate ideas at
once, and to create more opportunities for more creative ideas, the
Speech2Mindmap algorithm was designed. A mindmap created by
Speech2Mindmap is shown in Fig. 9, as an example. Speech2Mind-
map algorithm is composed of five steps of data processing: (1)
Speech-To-Text (STT), (2) text processing, (3) keyword extraction,
(4) keyword relation extraction, and (5) network graph visualiza-
tion. The collected data for two studies were sufficient to explore
a number of ways to examine and analyze the outcomes. All the
data sets that were performed One-Way ANOVA significant analy-
sis did not violate any assumptions including the normal distribu-
tion and the homogeneity of variance. The normality test and
Levene’s test were performed on all data sets. The main purpose
of these two case studies was to examine how well Speech2Mind-
map represents a human mind reliably while brainstorming only
based on speech input.
The general agreement between human-generated mindmap and

computer-generated mindmap was examined. Different system
variable variations and methods were explored in the three main
data processing steps: (1) Speech-To-Text (STT), (2) keyword
extraction, and (3) keyword relation extraction, to improve the simi-
larity between the human- and computer-generated mindmaps.

4.1 Case Study 1: General Agreement Between Human-
and Computer-Generated Mindmap. In this case study, five
human-generated mindmaps were compared to a mindmap that
was produced by the Speech2Minmap algorithm, in order to test
the general agreement between human and computer-generated
mindmaps, all generated based on the same pre-recorded brain-
storming session audio file.
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4.1.1 Node to Node and Edge to Edge Comparison Results.The
general agreement between the human-generated mindmaps and the
computer-generated mindmap was examined by analyzing each
node and each edge directly. Combining all five human-generated
mindmaps, there were a total of 65 nodes and 127 edges, where the
computer-generated mindmap contained a total of 51 nodes and
154 edges. The computer-generated mindmap included 36 nodes
out of 65 human-generated nodes, and 46 edges out of 127 human-
generated edges, resulting in a 55.38% and 36.22% match accord-
ingly. The match percentage seems very lowwhen it is directly com-
pared node to node and edge to edge. However, since the algorithm is
not designed to represent all human minds but to represent the
general agreement among human minds, analyzing the degree of
agreement among human mindmaps is important. Therefore, the
nodes and the edges that were created by participants were catego-
rized by the degree of agreement among human-generated

mindmaps, and the computer-generated mindmap was then exam-
ined to determine whether it included each category.
As shown in Fig. 10, as the degree of agreement among humans

increased, the percentage of nodes or edges included in the
computer-generated mindmap increased. To formally test this corre-
lation, a linear regression analysis was performed, while all the
assumptions for this analysis were not violated. Two variables,
the degree of agreement among human mindmaps and the accor-
dance with computer-generated mindmap are continuous variables
with a linear relationship and with no significant outliers. Also,
this data set has independence of observations and shows homosce-
dasticity, according to Durbin–Watson statistic value being equal to
1.5, which is within the normal range from 1.5 to 2.5, and having a
residual value of 0, respectively. Lastly, looking at the normal P–P
plot, the residual of the regression line indicated an approximately
normal distribution, as seen in Fig. 11.

Fig. 8 An example mindmap created by Speech2Mindmap

Fig. 7 An example mindmap created by human participants
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According to the linear regression analysis summarized in Table
1, the linear regression model showed a high degree of correlation
with the R value of 0.885, and the 78.4% of variations of the depen-
dent variable of this model, percentage of accordance with
computer-generated mindmap, can be explained by the independent
variable, degree of agreement among human mindmaps. Also,
according to the ANOVA test, the model is statistically significant,
p< 0.001. In this particular comparison, the nodes that more than
four participants had were all included in the computer-generated
mindmap. Similar to the nodes, the edges that were in all five

participants’mindmaps were all included in the computer-generated
mindmap. This analysis explains that as the degree of agreement
among human-generated mindmaps increased, the chance of
computer-generated mindmap agreeing increased as well. As a
result, the Speech2Mindmap algorithm is reliable in representing
manually generated human mindmapping output.

4.1.2 Granular Similarity Results. Next, tests to examine what
factors improve the similarity between human and computer-
generated mindmaps were conducted to find the best conditions

Fig. 9 An example computer-generated mindmap created by the Speech2Mindmap algorithm

Fig. 10 Match percentage between human and computer-generated mindmaps depending on the degree of agree-
ment among five human-generated mindmaps
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for each data processing stage. The initial Granular Similarity value
between each human-generated mindmap and the computer-
generated mindmap is shown in Table 2. The average Granular
Similarity value among the five comparisons was 0.639, with the
lowest being 0.50 and the highest being 0.719.
The Granular Similarity values were tracked while examining

different conditions for each data processing stage. While varying
conditions for each data processing stage were applied, the condi-
tions of other data processing stages remained constant. The STT
data processing stages were examined first.

4.1.2.1 Comparison of Speech-To-Text technologies. In order
to test which STT product performs better, four Granular Similarity
values were obtained for each mindmap using different products,

along with an average Granular Similarity value among five mind-
maps for each product. As shown in Fig. 12, using Google Cloud
and Microsoft Azure as the STT products resulted in the highest
Granular Similarity value (0.663). However, there was no statisti-
cally significant difference among STT products as determined by
one-way ANOVA (F(3,20)= 1.506, p= 0.243), as the data set
had a normal distribution and homogeneity of variances.

4.1.2.2 Comparison of keyword extraction damping factor
values. With improved text input, extracting the right keyword is
the next important stage. As the TextRank Eq. (1) shows, the
damping factor d is the only value that can vary beside the input
variables, ranging from 0 to 1. Therefore, three different damping
factor values, 0.80, 0.90, and 1.00, were explored, as shown in
Fig. 13. Among all comparisons, the results showed a trend: as

Fig. 11 Normal P–P plot of regression standardized residual

Table 2 Initial Granular Similarity value between human- and
computer-generated mindmaps

Human mindmap Granular Similarity value

Human mindmap 1 0.656
Human mindmap 2 0.667
Human mindmap 3 0.655
Human mindmap 4 0.500
Human mindmap 5 0.719
Average Granular Similarity value 0.639

Fig. 12 Granular Similarity value comparison with different STT products, error bars show±One Standard Error

Table 1 Linear regression model summary of match percentage
between human and computer

Model R
R

Square
Adjusted
R square

Std.
error of
the

estimate
Sig. F
change

Durbin–
Watson

Linear
regression

0.885 0.784 0.757 0.145 <0.001 1.5
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the damping factor value d increased, the Granular Similarity value
between human- and computer-generated mindmaps increased.
There was a statistically significant difference as the damping
factor increased, according to the one-way ANOVA (F(2,15)=
31.46, p< 0.001). A Tukey post hoc test revealed that the Granular
Similarity value significantly increased when the damping factor
was set to 1.0, (Granular Similarity Mean± Std Dev.), (0.6108±
0.07299), compared to 0.80, (Granular Similarity Mean± Std
Dev., Sig.), (0.345± 0.057, p< 0.001), and 0.90, (0.355± 0.
0669, p< 0. 001). However, there was no statistically significant

difference between the damping factor being 0.80 and 0.90 (p=
0.965). In addition, TextRank extracted more keywords as the
damping facto increased. Therefore, in this context, when the Tex-
tRank damping factor is set to 1.00, it performed the best.

4.1.2.3 Comparison of keyword relation extraction
techniques. To examine the relation extraction method, four differ-
ent combinations of keyword relation extraction methods were
explored in this study. Those combinations are co-occurrence,
co-occurrence+ FastText, co-occurrence+WordNet, and

Fig. 13 Granular Similarity value comparison with TextRank Damping Factor variation, error bars show±One Stan-
dard Error

Fig. 14 Granular Similarity value comparison with keyword relation extraction method combination variations, error bars
show±One Standard Error
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co-occurrence+ FastText+WordNet. The Granular Similarity
values for each human-generated mindmap and the average Granu-
lar Similarity values were calculated for each extraction method. As
shown in Fig. 14, using the co-occurrence+ FastText method and
the co-occurrence+ FastText+WordNet method for the keyword
relation extraction method had the highest average Granular Simi-
larity values. According to a one-way ANOVA, there was a statis-
tically significant difference (F(2,15)= 24.91, p< 0.001) between
relation extraction methods. In the Tukey post hoc test, it was
found that there were statistically significant differences between
the co-occurrence+WordNet method and the other three
methods, but no statistically significant differences between those
three extraction methods. Since the co-occurrence+FastText
method had the same Granular Similarity value but performed
faster than the co-occurrence+ FastText+WordNet method, in
this context, the best performing combination of keyword relation
extraction methods is the co-occurrence+ FastText method.
After testing the performance of the Speech2Mindmap algorithm

and exploring different variations within each data processing stage,
the Speech2Mindmap algorithm was able to generate a mindmap
that represents manually generated human mindmapping output.
In the context of the first case study, the Speech2Mindmap algo-
rithm performed best using the Google Cloud or Microsoft Azure
STT product, setting the TextRank damping factor d equal to 1.0,
and using the combination of co-occurrence and FastText as the
keyword relation extraction method. To validate the algorithm
further, a second case study was conducted to test the usability of
the Speech2Mindmap algorithm in a real brainstorming session.

4.2 Case Study 2: Reliability and Consistency of the
Speech2Mindmap Algorithm. In order to test if the Speech2-
Mindmap algorithm can generate mindmaps that are similar
enough to human-generated mindmaps consistently, 13 group
brainstorming sessions were conducted, obtaining 13 human-
generated mindmaps and 13 computer-generated mindmaps using
the Speech2Mindmap algorithm. The Granular Similarity values
between human and computer-generated mindmaps were obtained
to compare different STT technologies, variations of TextRank
damping factor d value, and keyword relation extraction method
combinations, similar to the first case study.

4.2.1 Granular Similarity Results

4.2.1.1 Comparison of Speech-to-Text technologies. Similar to
the first case study, three different STT off-the-shelf products,
Google Cloud, Microsoft Azure, and Amazon AWS, were com-
pared along with a human transcription. As shown in Fig. 15, mind-
maps produced with human transcription had the highest average
Granular Similarity value, and Microsoft Azure followed as the
second best. Different from the previous case study, Google
Cloud performed very poorly during this experiment. As deter-
mined by a one-way ANOVA, there was a statistically significant
difference between different STT products (F(3,52)= 12.357, p<
0.001). According to the Tukey post hoc test, the Granular Similar-
ity value significantly increased when using Azure compared to
using Google, (Granular Similarity Mean± Std Dev., Sig.), (0.324
± 0.180, p< 0. 001), or Amazon (0.427± 0.205, p= 0. 033). Sur-
prisingly, there was no significant difference between using Azure
STT and using human transcription (p= 0.784).

4.2.1.2 Comparison of keyword extraction damping factor
values. For the experiment to find the best performing TextRank
damping factor d value, three variations, 0.8, 0.9, and 1.0were exam-
ined. TheGranular Similarity valueswere obtained for each damping
factor, as shown in Fig. 16. The results indicate the same finding as
that found in the first case study: when the TextRank damping
factor is set to 1.0, the highest Granular Similarity values were
achieved among all 13 data points. Similar to the first case study,
there was a statistically significant difference as the damping factor
increased, according to a one-way ANOVA (F(2,39)= 4.955, p=
0.012). A Tukey post hoc test revealed that the Granular Similarity
value significantly increased when the damping factor was set to
1.0, (Granular Similarity Mean± Std Dev.), (0.807± 0.089), com-
pared to setting it to 0.80 (Granular Similarity Mean± Std Dev.,
Sig.), (0.686± 0.125, p= 0.019), or to 0.90 (0.697± 0.119, p=
0.035). However, there was no statistically significant difference
between the damping factor being set to 0.80 and 0.90 (p= 0.966).

4.2.1.3 Comparison of keyword relation extraction techniques.
Lastly, four different keyword relation extraction method combina-
tions were compared as follows: co-occurrence, co-occurrence+
FastText, co-occurrence+WordNet, and co-occurrence+ FastText

Fig. 15 Granular Similarity value comparison with different STT Products, error bars show±One Standard Error
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+WordNet. The Granular Similarity value of each group and the
overall average Granular Similarity value across all groups were
obtained for each extraction method combination. As shown in
Fig. 17, the performance of the extraction methods was similar
across all conditions. However, similar to the previous comparison,
using the combination of the co-occurrence and FastText, and the
combination of the co-occurrence, FastText, and WordNet per-
formed better than the other two combinations. Also, there were
no statistically significant differences among relation extraction

methods as determined by one-way ANOVA (p= 0.821). Even
though the Granular Similarity value between two combinations
were the same, the combination of the co-occurrence and FastText
methods performed faster. Since the Speech2Mindmap will be per-
forming in real-time in the future, the processing time is very impor-
tant. Therefore, in the context of this study, the combination of
co-occurrence and FastText for the keyword relation extraction
methods is the best performing method for the Speech2Mindmap
algorithm.

Fig. 16 Granular Similarity value comparison with different damping factor values, error bars show±One Standard
Error

Fig. 17 Granular Similarity value comparison with keyword relation extraction method combination variations, error bars
show±One Standard Error
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5 Discussion
In this research, the Speech2Mindmap algorithm was developed

to attempt to reduce designers’ cognitive load during ideation and
brainstorming sessions. The Speech2Mindmap algorithm was
tested to see if it could reliably generate a mindmap that was
similar to a human-generated mindmap. A few different conditions
for each data processing stage were also explored to examine their
impact on the similarity between human- and computer-generated
mindmaps. The Speech2Mindmap algorithm is shown to be reliable
to represent the manually generated human mindmapping output by
comparing the degree of agreement among the five human-
generated mindmaps and a computer-generated mindmap, based
on the same audio file input source. With further analysis to
improve the performance of the Speech2Mindmap algorithm,
when Microsoft Azure is used for STT transcription, the TextRank
damping factor d is set to 1.0, and the combination of co-occurrence
and FastText methods is used for the keyword relations extraction
method, the highest similarity was achieved between the human-
generated and computer-generated mindmaps. When all the
methods and conditions were set to their best performing option,
as mentioned earlier, the average Granular Similarity value rose
to 0.807, with the highest and lowest individual group value
being 0.934 and 0.660, respectively, as shown in Fig. 18.
According to the results, the Speech2Mindmap algorithm is able

to produce a mindmap that is approximately 80% similar to human-
generated mindmaps on average, using speech data as input.
Analyzing the recorded audio and video data of each group, theGran-
ular Similarity value very much depended on the quality of the audio
data. The group that had a higher Granular Similarity value had
consistent audio clarity and relatively few instances of one person
talking over another person. With better quality audio data input, it
is expected that the similarity of the automatically generated
mindmap to human-generated mindmap could improve further.
Ultimately, this work has contributed to the techniques available

for computational design support in the area of automated design
documentation. First, we have developed a Speech2Mindmap algo-
rithm that will automatically generate a mindmap based on a speech
data input, providing a new tool that could later support the gener-
ation of creative and innovative ideas while brainstorming. Gener-
ating a mindmap automatically, unsupervised, and from speech data
is particularly important since it may provide opportunities to

expand human creativity by allowing designers to save time and
to lower their cognitive load. This might result in an increase in
focus on ideation and brainstorming while providing all the benefits
that traditional manual mindmapping provides.
Also, in an online environment and from a virtual collaboration

perspective, this study could open up a new solution for online
group brainstorming. Until now, there are limitations to using brain-
storming tools in an online environment due to difficulties in inter-
action, participation, and visualization.

6 Limitations
There were some expected challenges and limitations in this

research. Since the proposed work is very dependent on develop-
ments in STT technology, the accuracy of the STT systems is par-
amount and will directly determine the accuracy of the
Speech2Mindmap algorithm. Further analyzing the recordings,
because participants moved around while brainstorming, the
audio of the participants faded in and out, causing the STT technol-
ogy to misunderstand or omit some words. Adjustments and optimi-
zation procedures were conducted to achieve the best results.
However, since the research is not about improving the accuracy
of the STT technology, but rather about identifying ideas or key-
words to expand creativity by using these technologies, the imple-
mentation focus was not on comparative performance.
When people explain personal opinions or ideas, they tend to use

hand gestures or facial expressions to support the interpretation of
their speech. Since the speech data were audio data recorded from
group conversations, the data did not capture the use of non-verbal
communication in conveying thoughts or ideas. Further analyzing
the video recordings along with the audio showed that there were
some cases where participants included keywords or associations
without actually mentioning the word, which was not detectable
by the Speech2Mindmap algorithm. As such, some implicit and
subtext information was lost.
In addition, asmost audio data in this researchwas conversational in

nature, it contained some conversational speech that did not directly
relate to the main subject or design problem, such as small talk.
Some keywords that were not related to the topic were included in
computer-generated mindmaps due to this extra dialogue. However,
those keywords did not greatly impact the results of the Granular

Fig. 18 Granular similarity value between human- and computer-generated mindmaps
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Similarity value between the human-generated mindmaps and the
computer-generated mindmap. When this additional small talk dia-
logue is longer than three minutes or is included in the middle of the
brainstorming session, it might cause a significant impact on the
computer-generated mindmap results. Recognizing and filtering out
this non-topical information is another challenge in this research.
Finally, it is acknowledged that the traditional representation of

mindmaps is a hierarchical structure. In this work, the mindmaps
generated by both humans and Speech2Mindmap are not represented
as hierarchical structures, but rather more interconnect graphs. In
analyzing the human-generated mindmaps after translating them
into a computer visualization, the research team found that human-
created mindmaps did not necessarily form a hierarchical structure,
as might be expected, but rather a more interconnected graph; this
is because participants used the same words in different places in
their mindmaps. As such, this constraint on the type of graph was
relaxed in the algorithmic approach to allow more freedom for con-
nections among nodes,with the idea that thesemay reveal an area that
participants have not yet explored or provide opportunities to think
outside of the box. The effect of this difference on design ideation
outcomes will be tested in future work.

7 Conclusions
Since the framework of the Speech2Mindmap algorithm using the

recorded audio files was introduced and analyzed, making the
Speech2Mindmap algorithm a real-time responsive algorithm will
be the next step. The usability and effectiveness of the Speech2Mind-
map algorithm while brainstorming will be able to be evaluated when

it is able to process live streams speech data and present a mindmap
in real-time. Along with the development of a real-time Speech2-
Mindmap algorithm, the ways to improve keyword extraction and
keyword relations will continue to be explored.
This research has the potential to be highly impactful in design

and virtual collaboration. With cognitive assistance to better visua-
lize, connect, and uncover ideas, designers will be more efficient,
effective, and innovative in their problem-solving and design pro-
cesses, leading to better solutions developed in virtual environ-
ments. The geographic and temporal flexibility of virtual design
teams and those who lack face-to-face interactions present chal-
lenges related to design team cognition and communication. The
goal of this research is to pioneer advanced digital mindmapping
technologies to overcome these limitations, which will empower
skilled designers around the world. Furthermore, increasing the
effectiveness of design team cognition and communication will
improve team productivity, ultimately increasing business profit-
ability and economic growth.
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Appendix

Fig. 19 Case study 1: human-generated mindmap 1
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Fig. 20 Case study 1: human-generated mindmap 2
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Fig. 21 Case study 1: human-generated mindmap 3
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Fig. 22 Case study 1: human-generated mindmap 4

Journal of Mechanical Design FEBRUARY 2022, Vol. 144 / 021401-19



Fig. 23 Case study 1: human-generated mindmap 5
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Fig. 24 Case study 1: computer-generated mindmap
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