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Development of design-by-analogy tools is a promising design innovation

research avenue. Previously, a method for computationally structuring patent

databases as a basis for an automated design-by-analogy tool was introduced.

To demonstrate its strengths and weaknesses, a computationally-generated

structure is compared to four expert designers’ mental models of the domain.

Results indicate that, compared to experts, the computationally-generated

structure is sensible in clustering of patents and organization of clusters. The

computationally-generated structure represents a space in which experts can

find common ground/consensus e making it promising to be intuitive/accessible

to broad cohorts of designers. The computational method offers a resource-

efficient way of usefully conceptualizing the space that is sensible to expert

designers, while maintaining an element of unexpected representation of the

space.
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D
esign by analogy, in which designers draw inspiration from cross-

domain design solutions, is a promising methodology for design prac-

tice (e.g., Bhatta & Goel, 1996; Davies, Goel, & Nersessian, 2009;

Goel, 1997; Herstatt & Kalogerakis, 2004; Vattam, Helms, & Goel, 2010).

Not all analogies are equally useful (Casakin & Goldschmidt, 1999; Chan

et al., 2011; Dunbar, 1997; Fu, Chan, et al., 2013; Gick & Holyoak, 1980;

Weisberg, 2009), raising the question of how to organize the very large space

of possible analogies to any given problem. A number of methods exist for

organizing spaces of possible design analogies (e.g., Gentner et al., 1997;

Gentner & Markman, 1997; Linsey, Markman, & Wood, 2008; Mcadams &
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Wood, 2000; Murphy, 2011; Verhaegen, D’hondt, Vandevenne, Dewulf, &

Duflou, 2011) that make use of varying computational and representational

techniques. For example, the computational work presented in this paper con-

siders a diverse set of possible structural types (e.g., trees, rings, chains) and

uses Bayesian methods for choosing the best type and the best instance within

each type.

Because design-by-analogy inherently has a human in the loop, it is useful to

understand how meaningful expert designers find the algorithm-generated or-

ganizations of possible inspirational examples. We hypothesize that a tech-

nique previously found to capture psychologically meaningful structures in

other contexts is especially likely to provide structures that align with the

mental models that humans develop through the design process. Such align-

ment could aid in both the effectiveness of the tool at stimulating designer’s

thinking and in easing the transition for its adoption. The study presented

here attempts to validate the proposed computational methodology and its

output through judgment of its accuracy and adequacy by four design experts

and also a direct comparison of its output to the experts’ structuring of the

same patent space, which presumably reflects their mental model of the space.

1 Background
Analogy and external stimuli in engineering design have been studied in a num-

ber of ways. Studies have been performed to understand how the introduction

of analogies affects the ideation process and outcomes (e.g., (Christensen &

Schunn, 2005; Dahl & Moreau, 2002; Goldschmidt & Smolkov, 2006; Linsey

et al., 2008), with some studies specifically examining how the introduction of

analogies with different levels of applicability to the design problem affects indi-

vidual designers (Christensen & Schunn, 2007; Tseng, Moss, Cagan, &

Kotovsky, 2008). For brevity, we do not dive deeply into the design by analogy

literature, here. Most relevant to the current context, the literature finds that the

distance of analogies to the current design problem can have a large influence on

the helpfulness of the analogy, with some distance being useful (Chan et al.,

2011; Dahl & Moreau, 2002; Dyer, Gregersen, & Christensen, 2011; Fu,

chan, et al., 2013; Gentner & Markman, 1997; Wilson, Rosen, Nelson, &

Yen, 2010), but analogies too far away show no benefit (Fu, chan, et al.,

2013). Thus, finding a tool that organizes the space of possible analogs by dis-

tance to the current problem may be especially useful.

1.1 Computational design tools
The development of computational tools to assist designers during the design

process is an area of considerable research in engineering design. To facilitate

functional modeling, Stone and Wood created a functional basis that can serve

as a universal language in the ideation process (Stone &Wood, 2000). This work

has been extended and adapted a great deal, including, for example, the creation

of a biological functional basis (Cheong, Shu, Stone, & Wood, 2008).
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The U.S. patent database conveniently catalogs existing technology and engi-

neering design and, thus, has been used in the development of numerous compu-

tational design aids. For example, TRIZ helps engineers overcome difficulties in

functional reasoning by searching through patents based on heuristic rules (such

as use of opposites) (Altshuller & Shapiro, 1956). One axiomatic conceptual

design model relies on the combination of TRIZ and functional basis (Zhang,

Cha, & Lu, 2007). Patent citation data has been used to identify the interrelated-

ness of technologies, and to demonstrate the benefits of tapping into the technol-

ogy knowledge base created by competitors within a design field (Chakrabarti,

Dror, & Nopphdol, 1993). The syntactic similarity between patent claims has

been investigated as an aid in patent infringement research (Indukuri,

Ambekar,&Sureka, 2007).Businesses have usedpatent repository tools andpat-

ent mining to predict potential market trends, identify prolific inventors, and for

other purposes. Among the characteristics explored in patent mining have been

the number of citations, number of claims, average number of words per claim,

and number of classes that the patent spans (Kasravi &Risov, 2007). The poten-

tial for using the Design Repository at Oregon State University as a design aid

was demonstrated by Bohm et al. by performing a function-based search using

Chi Matrix and Morphological Matrix techniques to find components that

were present in concepts generated by hand (Bohm, Vucovich, & Stone, 2005).

Morebroadly, design repositories ofCADmodels of components and assemblies

have been explored as resources for designers to streamline product design of

complex engineering systems by reusing, revising or gaining insight into previous

designs and models (Szykman, Sriram, Bochenek, Racz, & Senfaute, 2000). The

computational work examined in the current study focuses on structuring design

repositories, using more open-ended analogical transfer, and using the textual

content of the patents, which may generate richer outcomes.

In order to assist in avoiding patent infringement, Mukherjea et al. created a

BioMedical Patent Semantic Web that discovered semantic associations be-

tween important biological terms within biomedical patents, returning a

ranked list of patent resources and a Semantic Web showing the relationships

between the terms and between resources. Unlike our work, the Semantic

Webs generated by Mukherjea et al. are fully connected graphs with no

imposed structure, and the data includes only the abstract of the patents being

examined. Further, a Bayesian inference approach was not use to generate the

webs (Mukherjea, Bhuvan, & Kankar, 2005). Bayesian inference was used by

Chakrabarti et al., however, to train a model using a small data set of docu-

ments, which was then used to categorize the remaining documents into

“topics” and create a hierarchical structure (Chakrabarti, Dom, Agrawal, &

Raghavan, 1998). Structures other than hierarchies were not explored and

the structures created were not used as input for analogical design work.

PatViz, a tool developed by Koch et al. allows visual exploration of iterative

and complex patent searches and queries using a variety of patent data,
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including full text. Users may create one graph view with PatViz through a

guided process, rather than an algorithm. The tool includes three visualiza-

tions of interest: Patent Graph, which creates a fully-connected web of patents;

3D IPD Treemap, which creates a 3D tree structure of the patents based on a

predefined classification scheme; and Aggregation Tree, which is another tree

view that uses predefined adjustable hierarchies (Koch, Bosch, Giereth, & Ertl,

2009). Unlike the work of Koch et al., our work does not rely on predefined or

user-defined classification schemes; rather, it uses an exploration methodology

to discover the best-fitting structures among multiple types of structures to

describe the set of patents. The fit to the data being examined determines

the form of the structure.

While the U.S. patent database represents a potentially productive repository

of analogical or cross-domain design solutions, its size and complexity make it

difficult for designers to use effectively. There have been many attempts to

automate, aid, or streamline the search of the US patent database, including

simple key word searches on the United States Patent and Trademark Office

(USPTO) website or Google Patents, as well as theories like TRIZ and their

resulting tools (Altshuller & Shapiro, 1956; Duran-Novoa, Leon-Rovira,

Aguayo-Tellez, & Said, 2011; Hernandez, Schmidt, & Okudan, 2012a,

2012b; Houssin & Coulibaly, 2011; Krasnoslobodtsev & Langevin, 2005;

Liang, Tan, &Ma, 2008; Nakagawa, 2012; Nix, Sherret, & Stone, 2011; Zhang

et al., 2007). It is still difficult, however, to recognize and appreciate the char-

acteristics that might be relevant to a particular design problem within the

‘space’ of patents. A number of computational “innovation support tools”

have been developed (CREAX; Goldfire), as well as a number of research-

driven design support tools, proposals for design support tools, and method-

ologies (Bhatta & Goel, 1996; Chiu & Shu, 2005; Goel, Bhatta, & Stroulia,

1997; Verhaegen et al., 2011; Vincent, Bogatyreva, Bogatyreva, Bowyer, &

Pahl, 2006; Linsey, Wood & Markman, 2008). Many of these tools and

methods, however, rely heavily on the users to generate the terms or analogies

and comb through search results. Psychology literature suggests that the prob-

ability of retrieving similarities is low when surface dissimilarities exist,

because retrieval of far-field analogies is cognitively difficult (Gick &

Holyoak, 1980) and the range of remindings tend to be limited by surface sim-

ilarity (Forbus, Gentner, & Law, 1994). If designers have a means to extract

the interrelatedness and interconnectedness of patents in the space, especially

with respect to a specific design problem, they may be able to more strategi-

cally choose which cross-domain designs to review or to traverse the space

in a more intentional and meaningful exploratory way.

1.2 Computational basis
The computational methodology for discovering structural forms in patent

spaces is based on the work of Kemp and Tenenbaum (2008). Kemp and Ten-

enbaum devised an algorithm that can discover the underlying structure that is
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inherent to a particular data set, enabling the extraction of psychologically

meaningful relationships or information. The algorithm discovers 1) the

best-fitting form for a given set of data from a space of 8 possible forms, which

include a partition, order, chain, ring, tree, hierarchy, grid, and cylinder; and

2) the best-fitting instantiation of that selected form, which is called a struc-

ture. For example, given human similarity judgments for a set of sixteen

colors, the structural form discovered by the algorithm that best described

the data was a ring, matching the color wheel with which we are all familiar

from our elementary school days. Given data regarding votes of Supreme

Court justices, the best structural form discovered was a chain, organizing

the justices from liberal to conservative; again, a meaningful structuring.

Given data regarding features that a set of animals have, a tree structure

was discovered to be the best, similar in form type to the biological classifica-

tion scheme proposed by Linnaeus. The form types explored are based on the

psychology literature (Jaynes, 2003), and have been used in formal models in

many contexts (Anderson, 1991; Bradley & Terry, 1952; Carroll, 1976; Collins

& Quillian, 1969; Fiske, 1992; Guttman, 1944, 1954; Huelsenbeck & Ronquist,

2001; Inhelder & Piaget, 1969; Kohonen, 1997; Shepard, 1980; Sneath &

Sokal, 1973; Wiggins, 1996). In addition, the algorithm is based on Bayesian

inference, a statistical basis that has a long history of successfully describing

and modeling human cognition (Griffiths, Kemp, & Tenenbaum, 2008).

Jaynes describes human plausible reasoning as a calculation of the degree of

plausibility of a particular hypothesis being true based on previous experience

and common sense, and given the facts at hand, corresponding directly to the

components that must be considered when calculating the posterior probabil-

ity of a hypothesis being true given a set of data using Bayes Rule (Jaynes,

2003). This basis in human cognition is an important motivation for the choice

to use the Kemp and Tenenbaum algorithm in the computation methodology

being validated in this study, as it has the potential to be intuitive in the human

mind and thus form the basis for an automated design inspiration tool.

2 The current study
The goal of the current study was to gain a better understanding of the output

structures of the algorithm through comparison to human judgment. Struc-

turing algorithms such as Kemp and Tenenbaum’s (2008) have customarily em-

ployed comparisons to pre-existing “correct” structures as a method of

validation. In a similar vein, we employed comparisons of the algorithm’s

output structures to similar structures generated by expert designers, and also

solicited their qualitative reactions to particular aspects of the output structure.

This method was judged as appropriate for validation for two reasons. First, to

our knowledge, there exists no one “psychologically meaningful”, “correct”, or

“analytical” solution to the question of how to best structure design repository

data or patents. Second, the final application of this structuring work is in-

tended to be the basis for an automated design by analogy stimulation tool,

making it crucial that the output is intuitive or sensible to human minds.
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Figure 1 Reasoning chain of possi

734
Specifically, the study was performed to address two primary research

questions:

1. In what ways is the algorithm’s patent structure similar to or different

from how an expert designer might structure a space of patents in prep-

aration for inspiration through design by analogy with regard to a specific

design problem?

2. If the structure is different, can experts nevertheless make sense of it and

perhaps see new connections between patents?

The reasoning chain in Figure 1 represents possible outcomes that feed into

three main potential inferences from the study. First, suppose that the algo-

rithm structures patents in the exact same way that experts do. In that case,

we might infer then that (1) the algorithm does what an expert would be able

to do, but more efficiently. This would not be an insignificant outcome, as lim-

itations of attention and working memory capacity (Cowan, 2000), and time

and effort effectively preclude the possibility of structuring large databases

of potential analogical stimuli by hand. Furthermore, supporting new ways

of representing the patent space are not the only way to help inspire innova-

tion. Experts’ mental representations are often based on deep structural simi-

larity between knowledge structures and domains (Chi, Feltovich, & Glaser,

1981), and experts are often able to draw deep structural analogies from mem-

ory (Ahmed & Christensen, 2009; Ball & Christensen, 2009; Christensen &

Schunn, 2007; Holyoak & Thagard, 1996; Novick, 1988). Accurate external-

izations of experts’ mental representations could potentially inspire innovation

by supporting search for non-obvious analogous solutions to design problems

that are hidden by surface dissimilarities (e.g., application domain, engineering

discipline). Further, engineering design is inherently and increasingly interdis-

ciplinary (Reich & Shai, 2012); even experts with one disciplinary focus may be

inspired by representations that include insights from other relevant
ble outcomes of study and main possible inferences.
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engineering disciplines. The possibility of being able to aggregate expert repre-

sentations across domains could be useful in catering to the increasingly inter-

disciplinary nature of engineering design. These aggregate representations

could give access to solutions that might be hidden by surface dissimilarities,

given that when one approaches a domain in which she is not expert, process-

ing is easily dominated by surface features (Chi et al., 1981; Hmelo-Silver &

Pfeffer, 2004; Novick, 1988).

Secondly, suppose that a) the algorithm produces a structure that is completely

different from that of the experts, but the experts are nevertheless able to make

sense of it, or b) the algorithm produces a structure that bears both similarities

and differences to that of the experts, and the differences are not so large as to

render the structure incomprehensible. From both these outcomes, we could

infer that (2) the algorithm may structure the analogical stimuli in a way that

potentially allows for novel connections to be made between patents. The algo-

rithm’s grouping of patents into nodes based on functional similarity could

highlight features and functional principles that would otherwise potentially

be overlooked (e.g., via analogical comparison; (Gentner et al., 1997; Kurtz,

Miao, & Gentner, 2001)) yielding fresh insights for creative ideation that could

inspire innovation. In the cognitive psychology literature, it has been shown

that enabling changes in representation of objects and/or ideas, for example

by leading problem solvers to attend to previously ignored features, is an effec-

tive way of dealing with “functional fixedness”, where problem solvers have

difficulty seeing a potential creative use of an object with which they are

familiar (Kaplan & Simon, 1990; McCaffrey, 2012).

Finally, suppose that a) the algorithm produces a structure that is completely

different from that of the experts, and it is incomprehensible to them, or b) the

algorithm produces a structure that bears both similarities and differences to

that of the experts, and the differences are so large as to render the structure

incomprehensible. From both these outcomes, we could infer that (3) the algo-

rithm may need revision in order to be useful for supporting design-by-analogy.

These outcomes and inferences comprise the set of potential contributions of

the study to the research and development of our automated design-by-

analogy support tool.

3 Methods
To address our research questions, we asked a set of expert designers to 1)

structure a set of patents, and 2) provide focused feedback on our algorithm’s

output structure. Structuring of the patents was conducted in the context of

preparing to solve a particular design problem, given our interest in comparing

the experts’ judgments of patents’ relevance to the design problem to the algo-

rithm’s ordering of patents’ relevance as represented in the layout of the struc-

ture. The similarity of our algorithm’s output structure to the experts’

structures was evaluated both quantitatively and qualitatively. In the
design repositoxy space 735
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following sections, we describe the details of our methods of data collection,

and also the algorithm we used to produce the structure.

3.1 Participants
This study was conducted with four design experts in Pittsburgh, PA, USA.

All participants were males with at least 10 years of experience in the field

of product design, and an educational background in engineering or industrial

design. Three participants were employed at local product development firms,

and one was employed at a local biomedical apparatus design and manufac-

ture firm. The participants were highly experienced and comfortable in review-

ing and researching patents. Each participant was compensated with $100 for

the 2 h of the study. Though there were only a small number of participants,

the information is considered valuable because it is based on expert data, and

includes deep analysis of interaction between 45 different pieces of information

(patents) for each of the four experts. Further, significant insights in the study

of knowledge representations have often been obtained with only a few partic-

ipants whose behaviors are examined in depth (Chase & Simon, 1973; Chi

et al., 1981; Chi & Koeske, 1983; Gobet & Simon, 2000; Huth, Nishimoto,

Vu, & Gallant, 2012; Morais, Olsson, & Schooler, 2013), and a review of

research on design revealed that published studies have often been conducted

with qualitative analyses of the performance of a small number of experts

(Mehalik & Schunn, 2007).

3.2 Materials
The experts were supplied with the following materials:

� Consent form

� Design problem description (see Section 3.3), on a 8.5 in by 5.5 in piece of

paper, laminated, with mounting putty on the back

� Title, abstract text and one key figure from thirty-seven randomly selected

mechanical patents and eight patents selected from previous studies pre-

sented in Chan et al. (2011) and Fu, chan, et al. (2013) (see Appendix A),

each on a 8.5 in by 5.5 in piece of paper, laminated, with mounting putty

on the back

� A 56 in by 107 in sheet of white craft paper, fixed to a wall

� Multiple colored magic markers, one black marker, and one pen

� Pad of sticky notes

� An 8.5 in by 11 in depiction of the algorithm’s output structure for the same

45 patents

� Title, abstract text and one key figure from patents in 3 different clusters of

the algorithm’s output structure, each on a 8.5 in by 5.5 in piece of paper.

3.3 Design problem
The design problem supplied to the experts is one that has been used

throughout the development and analysis of this work on the structuring of
Design Studies Vol 34 No. 6 November 2013
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patents for use in design by analogy, as presented in Chan et al. (2011) and Fu,

chan, et al. (2013). The textual design problem description as supplied to the

experts of this study is as follows:

Design a device to collect energy from human motion for use in developing

and impoverished rural communities in places like India and many African

countries. Our goal is to build a low-cost, easy to manufacture device tar-

geted at individuals and small households to provide energy to be stored in

a rechargeable battery with approximately 80% efficiency. The energy is in-

tended to be used by small, low power draw electrical devices, such as a radio

or lighting device, hopefully leading to an increase in the quality of life of the

communities by increasing productivity, connection to the outside world, etc.

The target energy production is 1 kW-hour per day, roughly enough to power

eight 25 Watt compact florescent light bulbs for 5 hours each per day, or

enough to power a CB radio for the entire day.

For reference, an average adult human can output about 200 watts with full

body physical activity for short periods of time, with a significant reduction

for sustained power output.

3.4 Patent selection
An initial random subset of 10,000 patents was selected from the patent data-

base. From this initial set, patents were chosen for the final set if they were

classified within the U.S. Patent classification system as “Body Treatment

And Care, Heating And Cooling, Material Handling And Treatment, Me-

chanical Manufacturing, Mechanical Power, Static, and Related Arts”. In

addition, for continuity with previous studies and an understanding of human

judgment of these patents, eight additional patents were included from two

previous studies performed by the authors (Chan et al., 2011; Fu, chan,

et al., 2013). Four of these patents were the “far” analogical stimuli from

the study performed to understand how analogical distance, commonness,

and modality affect ideation outcomes presented in Chan et al. (2011), and

the other four were the “far” analogical stimuli from a study performed to

test the use of structures of patents created using Kemp and Tenenbaum’s dis-

covery of structural form algorithm to choose “near” and “far” patents and

measure their effect on ideation outcomes, presented in Fu, chan, et al. (2013).

Both previous studies used the same design problem used here, described in

Section 3.3. In total, 45 patents were provided to the experts as described

in Section 3.2.

3.5 Algorithmic structure generation
The method used to produce the structure of patents shown in Figure 2 has

been presented in depth in Fu (2012) and Fu, Cagan, Kotovsky & Wood

(2013). The computational methodology for generating structures of patents
design repositoxy space 737
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has three main parts. First, the set of 45 full-text patents are preprocessed us-

ing Latent Semantic Analysis (LSA), a computational text analysis tool that

allows for the extraction of contextual similarity and synonymy between

words and documents (Deerwester, Dumais, Furnas, & Landauer, 1990;

Foltz, Kintsch, & Landauer, 1998; Landauer, Foltz, & Laham, 1998). The

output from this first step is a similarity matrix, assigning a numeric value be-

tween 0 and 1, connoting semantic similarity, to all pairwise relationships be-

tween patents.

This similarity matrix is the input to the second portion of the methodology,

which is an algorithm for the discovery of structural form in data, devised by

Kemp and Tenenbaum (2008). The algorithm is a hierarchical Bayesian algo-

rithm that discovers the structure and form type, chosen from a predefined set

of form types, including the partition, order, chain, ring, hierarchy, tree, grid,

and cylinder, that achieves the highest posterior probability value for the descrip-

tion of the data by a particular form type and structure. Within the algorithm,

the form of the structure itself changes as the data being examined changes and

has the potential of revealing deep structural relationships between patents.

Finally, LSA is used again to generate labels for the output structure, which

describe the clusters of patents in the best structure, allowing a designer

viewing the structure to understand the meaning of the clustering of the pat-

ents, and characterize the space for navigation and exploration. Labels were

not included in the structures used in this study, as the researchers were inter-

ested in the alignment of expert-generated labels and computationally-

generated labels. A further post-processing step is done to extract “regions”

of similarity in the structure, which further facilitate efficient understanding

and exploration of the space of patents. These regions were also excluded
Design Studies Vol 34 No. 6 November 2013
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from the computational output used in this study. The main goal of this work

is a comparison of the judgment of experts to, and a validation of, the struc-

ture(s) generated by this methodology. The full text of the 45 patents used in

the methodology described above, enumerated in Appendix A, were used to

create the grid structure in Figure 2.

3.5.1 Cluster label generation
The structure shown to the experts (see Figure 2) did not include labels to indi-

cate the similarity or meaning of the associations of patents within the clusters.

Having the experts suggest labels, both for the clusters within the structure

generated by the algorithm, as well as for the clusters within their own patent

space or structure, was a way to collect data that could then be compared to

labels that were generated computationally. The labels were generated by em-

ploying LSA, as described in Fu et al. (2013). Two different methods for label

generation were employed, the results of which are presented next. The first

method, the Highest Average Rank Labeling method, averaged the ranks of

each word in the LSA space for each patent within a cluster, and used the

top five highest average ranked words for that cluster. The second method,

the Highest Cosine Similarity Labeling method, gathered the top twenty words

with the highest cosine similarity to each patent within a cluster, pooled and

sorted the words in descending cosine similarity value order, and used the

top five words with the highest cosine similarity values in the pool of words

for the patents within that cluster. The results yielded by Highest Average

Rank Labeling method are shown in Figure 3. The results yielded by the High-

est Cosine Similarity Labeling method are shown in Figure 4. The results of

both methods are discussed for the three nodes in particular in Table 6 as

compared to expert generated labels. Because four of the patents included in

the space from the previous work presented in Chan et al. (2011) were not
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probe, damp

Figure 4 Algorithm output

structure of 45 patents with

cluster labels, highest cosine

similarity method.

Table 1 Correlations between

E

E1
E2 0.2
E3 0.2
E4 0.0
Algorithm 0.2

Note: Values are Phi conting
a denotes statistical signifi
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part-of-speech tagged, many unimportant words were included in the text, and

thus the LSA space. These words were manually filtered out to increase the

quality of the labels. This problem would not arise if all patents in the space

have been pre-processed with part-of-speech tagging.

3.6 Experimental procedure
Each participant was allotted 2 h to complete the study, and the five sessions

were run in three different locations. All locations were similar, in that they

were large conference rooms, in which experts had ample light, table space

on which to work, seating, and a large wall space for building the structure.

3.6.1 Experimenter’s instructions and overview
The study began with one of the experimenters explaining the motivation of

the study, the schedule of tasks, and the specific instructions for completing

those tasks. The experts were told that the goal of the study was to understand

how an expert, or professional product designer, might organize a collection of

patents to facilitate searching for potentially relevant inspiration for design-

by-analogy, and how this is similar or different from the output of an
participant and algorithm-generated structures of patents

1 E2 E3 E4 Algorithm

0.22a 0.21a 0.02 0.24a

2a 0.10a 0.01 0.11a

1a 0.10a 0.00 0.15a

2 0.01 0.00 0.17a

4a 0.11a 0.15a 0.17a

ency coefficients.

cance at the .01 level (2-tailed)
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Table 2 Logistic regression of algorithm pairwise patent links on number of experts judging pairs as linked

B S.E. Wald df p Exp(B) 95% C.I. for Exp(B)

Lower Upper

Constant �2.59 .14 339.48 1 0.00 .08
Expert links 0.93 .11 68.37 1 0.00 2.53 2.03 3.15

Table 3 Algorithm structure n

Node # of nodes awa
from design prob

1 0

2 1

3 3

Expert representation of
algorithm we have that tries to do this automatically for large collections of

patents. The experts were then tasked with reading, processing, and placing

the design problem and the 45 mechanical patents onto a large sheet of paper

on the wall, such that the physical proximity between the patents connoted

functional similarity, and physical proximity of patents to the design problem

connoted relevance to the solving of that design problem. In addition, it was

requested that the experts attempt to build the patent space in a way that fa-

cilitates searching through the collection of patents for potential inspiration

for a design problem. It was emphasized that the space of patents should cap-

ture functional similarity, and not necessarily problem or technological

domain similarity. To illustrate this point, experts were given the example of

placing a patent for a car suspension system near a patent for a running

shoe based on the fact that shock absorbing is a function that is key in both

patents. This phase of the procedure took approximately 5 min.

3.6.2 Participant patent space creation
The experts were given the design problem description along with the first 5

patents (in numerical order, see Appendix A). They were told to first read

the design problem and think about it for a fewmin. They were explicitly asked

to try not to solve the design problem per se, but to think about the design

problem as contextualizing information with which to approach the building

of the patent space.
odes evaluated by experts during interview

y
lem

Patent # Patent name

27 Induction loop vehicle detector
16 Escapement mechanism for pendulum clocks
18 Earthquake isolation floor
32 Accelerometer
5 Interactive toy

17 Single drive, multi-screw sorter with pusher means
25 Hanger tilt mechanism for hanging transportation apparatus
15 Fuel injection system for linear engines
29 Smoke generating apparatus
2 Self-cleaning pressure relief and bypass valve, dispensing

apparatus and method
45 Animal waterer
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Table 4 Mean expert reactions to each of the algorithm nodes

Participant Node 1 Node 2 Node 3

E1 1.00 1.00 1.00
E2 1.00 0.25 1.00
E3 1.00 0.00 1.00
E4 1.00 1.00 0.75
Mean “Sensibility” 1.00 0.56 0.94
% Outright Yes 100% 50% 75%
1 ¼ Outright Yes, 0.75 ¼ Yes, but there’s an odd one out, 0.25 ¼ Ok, if you insist, but I really wouldn’t put them
together unless I had no choice, and 0 ¼ Outright No

Table 5 Summary of expert r

Participant S

E1 Makes se

E2 Overall r
although
1 into 2 a
18) a littl
than nod

E3 Ordering
(doesn’t l
talk abou

E4 Makes se
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After this, experts were told to read each patent, look over the associated key

patent figure, and place a sticky note on it, writing down key functions or sub-

functions of the patent as described. This functionally focused note was meant

to serve as a quick reference for them as they built and iterated on the patent

space, as well as to remind them to focus on the functionality of the patents as

they are placing them in the space. After these six items were read and pro-

cessed, the experts were videotaped placing the patents on the large piece of

paper on the wall. They were given markers and told that they could annotate

the structure as they progressed, and should feel free to modify the placement

of the patents or the content of the sticky notes at any point in the patent space

building process.
After placing the design problem and first five patents in the space, the experts

were given the remaining 40 patents in sets of 10 (in study index number order

as shown in Appendix A), with a total of four sets of 10. Each set of 10 patents
eactions to algorithm’s distance orderings

ummary of response Representative quotes

nse The ordering of it makes sense to me, the order of
how far away they are.

elative ordering makes sense,
he would like to split node
nd make part of it (16 and
e further out, but still closer
e 2.

But I would actually almost do it like, these two,
32 and 27, then these two 16, 18. And then those
[group 2], your other group, and then those
[group 3]

of 1 and 3 makes sense
ike 2, so doesn’t want to
t it)

Um, so yeah that makes sense, although this one
[group 2], I, like I said. So like if this one
[group 1] were, if this were in the upper left
hand corner, that’s sort of your origin or your
center. You know, I’d probably put this [group 3],
you know, closer to that than I would put this, ‘
cause I just don’t know what the heck this, this
group [group 2] means.

nse Ok, I understand why that is
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Table 6 Summary of expert proposed labels and LSA generated cluster labels

Participant Node 1 Node 2 Node 3

E1 Motion dampening related to
magnetic fields

Applying small forces to create
larger movements

Fluid movement and control

E2 Energy transfer, energy
capture

Complex mechanical systems Hydraulic output control

E3 Motion conversion N/A Fluid transfer
E4 Oscillatory motion as input Rotation as input Dispensing fluid (in a

discrete amount)
Highest
Average
Rank

Mean, show, operate, present,
cause

Part, rotate, shaft, drive,
mechanism

Valve, open, provide,
pressure, connect

Highest
Cosine

Coil, anchor, pallet, escape,
arbor

Product, toy, sort, screw, cam Fuel, valve, liquid,
diaphragm, combustion

Expert representation of
was read, processed, and placed on the wall before proceeding to the next set of

10. The placement of the patents on the wall was videotaped for all sets. Once

finished, the experts were told to take a few min to ensure they were satisfied

with their placement of patents in the space, and to move them around if neces-

sary until the placement was found to be satisfactory. The patents were pro-

cessed in the same order across experts to eliminate any effect order of

exposure or processing of the patents might have on their creation of the pat-

ent space. Overall, this phase of the procedure took approximately 1 h and

15 min.

3.6.3 Participant explanation of structure
On video, the experts were then asked to walk the experimenters through

the structure, explaining any groups that emerged, the logic behind the

organization of the space and regions of patents within the space, and

the significance of distance of patents from each other or from the design

problem. They were asked to write down key words or labels on the pa-

per itself describing their regions, or clusters of patents, as they talked

through them. In addition, the experimenters asked the experts to draw

lines indicating borders, clusters, and flows, etc. where appropriate to

clarify their patent space and the meaning behind it. This phase of the

procedure varied between experts, but took approximately 10 min, on

average.

3.6.4 Participant interview regarding algorithm output
structure
The experts were then asked to examine the structure that constituted the

output of the algorithm (see Figure 2); the method used to generate this struc-

ture is described in Section 3.5. This structure examination was performed sys-

tematically for three different nodes, and audio and video recordings of these

interviews were made. The design problem is in the upper left corner, and indi-

cated by the shaded circle. The nodes examined were the upper left corner,
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containing patents 32, 18, 16, and 27; the left middle, containing patents 5, 17,

and 25; and the bottom middle left, containing patents 29, 2, 45, and 15. Ex-

perts were provided with half sheet descriptions of the patents in each of the

three nodes, including the title, abstract, and one key figure, and were asked

the following questions for each of the three nodes, examining one node at a

time:

Node Grouping Evaluation Questions (asked regarding three separate

nodes)

The algorithm puts patents in the same node that are closely functionally

related. Does it make sense to you that these patents are in the same node?

What key functional relationships do you think make them go together?

Are any of these relationships ones you hadn’t thought of before? Does

the grouping of these patents yield any fresh insights or ideas that you

think might be useful for the design problem?

Questions Regarding Reactions to Distance of Clusters from Design

Problem

The algorithm places nodes with respect to the design problem based on

potential relevance. So, the patents in Node 1 (distance 0) are supposed

to be pretty similar/relevant to the design problem, followed by the patents

in Node 2 (distance 1) and then Node 3 (distance 3). Does this node place-

ment make sense? Why or why not?

General Reactions Question

Do you have any overall impressions about this structure with respect to

its usefulness for supporting creative design ideation? If you were to use

a structure like this for design by analogy ideation, would you find it useful

to have labels describing the functional similarity of the patents within the

clusters?

This phase of the procedure also varied between experts, but on average, the

interview phase lasted 15e20 min.

4 Results
The data collected in this study was very rich, allowing for a number of ways to

examine the outcomes. The main analyses presented here include a quantita-

tive comparison of the structures generated by all experts to one another

and to the algorithm’s output structure, a comparison of expert-suggested

cluster labels to LSA-generated cluster labels, and a summary of key patterns

in the audio and video data. The patent spaces generated by each expert are

included in Appendix B.
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Expert representation of
4.1 Pairwise associations of patents
The patent spaces or “structures” that were created by the experts were diverse

in arrangement, meaning, and format. The clear commonality between the

participant structures and the algorithm’s output structure is the clustering

or grouping of patents. Thus, to examine the degree to which experts (and

the algorithm) agreed on patent clustering, we examined correlations between

structures at the pairwise-link level. Specifically, for all 990 possible pairwise

links between the 45 patents, we noted whether each expert (and the algorithm)

posited a link or not. Table 1 shows that experts 1e3 had statistically signifi-

cant similarities to each other at the pairwise-linking level; however, correla-

tions are small, in part reflecting the correlation analysis’s correction for

chance agreement (which is high in binary-to-binary correlations, and espe-

cially high when the ratio of non-links to links is very large), and in part

demonstrating substantive variation among experts’ representations of the

space. Some clarity on the reason for these variations is proposed in Section

4.5.2, in which the analyses of video and audio data are presented. Notably,

the algorithm correlated significantly with all experts, including E4. This is

important to highlight, as the lack of correlation between E4 and the other

3 experts suggests that this expert was thinking differently about the inter-

relationships between the patents and the design problem, and yet the algo-

rithm was still able to incorporate some of that perspective into its structure.

From the perspective of developing a tool that maps a space of patents and

enables automated search for potentially relevant and inspiring patents,

correctly not linking two patents that experts generally agree should not be

linked is equally as important as correctly linking two patents that experts

agree should be linked. A high rate of spurious links would render the tool

practically useless, as any query for potentially inspiring patents within the

structure would return a deluge of results that included a large number of irrel-

evant patents. Furthermore, as there seems to exist nontrivial variation in

terms of expert representations of patent spaces (as indicated by the statisti-

cally significant but small inter-correlations), a useful tool should probabilis-

tically track the degree of overlap between expert representations, such that

patent links that at least one expert proposed should be proposed by the

tool with a low but nonzero probability, and patent pairs that more experts

agree are linked should be linked by the tool with a higher probability.

To formally test whether our algorithm not only correctly proposed expert-

agreed-upon links, but also correctly rejected expert-agreed-upon non-links,

and whether the algorithm’s link assignments probabilistically tracked the de-

gree of agreement among experts for links, we fitted a logistic regression model

predicting the probability of the algorithm linking any two patents, with expert

links as the predictor, where expert links indexed the degree of agreement

among experts on a given link, ranging from a minimum of 0 if no expert
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Figure 5 Proportion of patent

pairs linked in algorithm

output structure by number

of experts judging pairs as

linked.
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judged the pair as linked, and a maximum of 4 if every expert judged the pair

as linked. The results of this analysis are shown in Table 2. The overall model

was statistically significant, c2(1) ¼ 70.75, p < .000, and a Hosmer and Leme-

show test of deviations from the logistic model turned out nonsignificant,

c2(1) ¼ 0.31, p ¼ .58, indicating a model with adequate fit.
As shown in Figure 5, for patent pairs for which no experts proposed a link, the

algorithm proposed links for less than 10% of those pairs, the proportion of

algorithm-proposed links increased monotonically as a function of the number

of expert-links, and the algorithm found 100% of the links that all four experts

agreed upon. This function is quantified in the results of the logistic model,

which estimated that, with each additional expert judging a patent pair as

linked, the probability of the algorithm linking the pair more than doubles

(exp(B) ¼ 2.53; see Table 2).
Taken together, the results of the pairwise patent link analysis point to the idea

that the algorithm clustering of patents can be judged as “common ground” or

consensus among experts within this study, both in terms of correctly grouping

patents together that experts agree should be grouped, and correctly not

grouping patents together that experts would agree should not be grouped.

Importantly, the algorithm also appears to be able to incorporate an “outlier”

perspective in its grouping of the patents, as evidenced by the algorithm’s link

correlations with E4, despite a lack of significant correlations between that

expert and the other experts.

4.2 Expert reactions to algorithm output structure
The interview of the experts’ reactions to the algorithm output structure was

comprised of two parts: 1) evaluating the sensibility of the clustering for

each node, and 2) evaluating the sensibility of the ordering of node distances
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Expert representation of
from the design problem. The condensed findings for these two interview

phases are presented next.

4.2.1 Expert reactions to sensibility of clustering
The expert reactions to the algorithm’s structure were obtained as they exam-

ined three separate nodes in detail, at varying distances from the design prob-

lem. Table 3 shows the contents of each node, along with their distances from

the design problem. Table 4 shows the summary of expert reactions to the clus-

tering of patents in the three nodes that were examined. The expert judgments

were quantified by the first two authors on a scale from 0 to 1, where

1 ¼ “Outright Yes”, 0.75 ¼ “Yes, but there’s an odd one out”, 0.25 ¼ “Ok,

if you insist, but I really wouldn’t put them together unless I had no choice”,

and 0 ¼ “Outright No”. In addition, the proportion of experts that reported

that the clustering “made sense” or not was calculated, also presented in

Table 4.

These results indicate that, overall, the experts were generally satisfied with

the clustering created by the algorithm output structure of patents. Node 2

was the only cluster of which the participants were not in majority agreement

with the algorithm clustering. This may be due to different conceptualiza-

tions of the design problem space, or attending to different features in the

patents themselves when considering their clustering. Further discussion of

these possible explanations is presented in Section 4.5. Overall, however,

the clustering of patents within the nodes examined was affirmed by the ex-

perts, and we emphasize that only one expert outright rejected the clustering

in Node 2 as invalid.

4.2.2 Expert reactions to sensibility of node distances
The second portion of gathering expert reactions to the algorithm output

structure was gauging their feelings about the placement of the three clusters

being examined in the structure with respect to one another and to the design

problem location, indicated by the red circle in Figure 2. As summarized in

Table 5, the experts generally found the node distances to make sense. Partic-

ipant 3, as seen in the previous section, did not agree with the clustering of

Node 2, and thus did not want to discuss its location in the structure. Partic-

ipant 2 would have liked to see Node 1 further subdivided into two smaller

clusters, grouping patents 32 and 27 in one, and 16 and 18 in the other. Overall,

the locations of the nodes examined within the structure, both relative to one

another and to the design problem were affirmed as well.

4.3 Exploratory quantitative comparison of distance
orderings
To further explore the degree to which the algorithm’s distance orderings were

valid, we undertook an exploratory quantitative comparison of the distance

orderings between the algorithm and the experts’ structures. Unfortunately,

3 of the 4 experts did not appear to have an explicit overall similarity space
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that organized their structures above the cluster level, and also did not explic-

itly represent distance of clusters to the design problem. E1 said he was not

sure how any of the specific patents were related to the design problem, and

did not talk about the relative relevance of each of his clusters to the design

problem; E3 did include a “not interesting” category of patents (i.e., patents

unlikely to be relevant to the design problem), but the overall spatial ordering

of his structure was governed more in terms of a functional flow structure than

by relevance to the design problem; E4 explicitly opposed any notion of

ordering of relevance, contending that all clusters were potentially relevant.

Only E2’s structure bore evidence of spatial ordering of relevance to the design

problem, both in the structure itself, and in the verbal content of his explana-

tion of the structure. It is unclear to us why only E2 was willing to spatially

order the patents by relevance e perhaps further studies with more experts

might uncover whether this is due to timing (e.g., a general reluctance of expert

designers to prune out stimuli as irrelevant in early stages of ideation), scale

(e.g., greater willingness to order by relevance with more stimuli), or some

other reason.

Nevertheless, we thought it would be informative to examine the correlation

between the distances of patents from the design problem in E2’s structure

as compared to the algorithm’s structure, while bearing in mind that inferences

made from this exploratory analyses should be made with care.

To measure distances, the following procedure was used. First, an image of

E2’s structures was printed out on letter sized (8.5 � 11 in) paper. Next, dot

markers were drawn by one of the authors at the centroid of each patent clus-

ter. Finally, a standard metal ruler was used to measure the distance of each

dot from the middle of the design problem. Measurements were in cm, in in-

crements of 0.1 cm. Each patent in the cluster received the distance value of

the centroid dot from the design problem. For example, if patents 1 and 4

were in cluster 1, and the distance of the centroid of cluster 1 from the design

problem was 6 cm, then patents 1 and 4 were regarded as being 6 cm from the

design problem. In the algorithm’s structure, each patent’s distance from the

design problem was the number of nodes (shortest path) from the patent’s

node location to the design problem.

There is a pragmatic and a theoretical motivation for assigning distances at the

cluster level rather than the patent level. Pragmatically, we had reason to

believe that the experts did not pay much attention to distances at the patent

level, due to constraints (either perceived or real) of the structuring procedure.

For example, our instructions asked the experts to (if possible) avoid covering

the titles/numbers of patents, which forces a minimum distance on the patents

inside a cluster. Theoretically, this cluster-level way of measuring distance is

closer to how the algorithm does so (distance from design problem defined

at the node level).
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Figure 6 Scatterplot of patent

distances in E2’s vs. algo-

rithm’s structures.

Expert representation of
In this exploratory analysis, a statistically significant and fairly sizable corre-

lation was found between the distances of E2 and the algorithm (Pearson

r ¼ 0.55, p < 0.01) (Figure 6).

This finding provides a useful complement to the interview data, given the rela-

tively large effect size and explicit examination of the agreement in distance or-

derings for all 45 patents (as opposed to the 11 in the qualitative reactions in

the previous section), and lends strength to our conclusion that the algorithm

achieves some success in organizing patents in the space in a way that is mean-

ingful and sensible to experts.

4.4 Cluster label analysis
The experts were also asked to propose functional labels for each node. Table

6 shows the labels they proposed, in addition to the labels generated by the two

cluster label generation methods presented in Fu et al. (2013), Highest Average

Rank and Highest Cosine Similarity. In addition, the full cluster label set for

both labeling methods are presented on the algorithm output structure in

Figures 2 and 3. On the surface, there seems to be a fair bit of overlap of

the text within the labels suggested by the experts for Node 3, to a slightly

lesser extent with Node 1, and much less with Node 2. The experts tend to

agree that Node 3 is a cluster of patents related to controlling or moving fluids.

The Highest Average Rank method for cluster label generation yielded labels

that indicate that fluid is the topic area common to the patents within Node 3,

but also the functionalities or components that are employed in the patents,

like “connect” and “valve.” The Highest Cosine Similarity method of gener-

ating cluster labels yielded words that are on topic with fluid applications,

but much more specific in terms of actual processes or components, such as

“combustion” and “diaphragm.”

Experts suggested labels for Node 1 that mostly are related to motion, with

one expert suggesting more energy-related labels. Similarly, the Highest
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Average Rank labels for Node 1 seem to be general functional terms, not spe-

cific to motion or energy capture; and the Highest Cosine Similarity labels, like

those for Node 3, are topical to the specific content of the patents within the

node e though they reference mechanisms that would be useful when trying

to capture energy from motion, like “escape” (as in escapement) and “coil”

(as in induction).

The expert-suggested labels for Node 2 are diverse in the specific words cho-

sen, though they all relate to mechanical systems (note, node 2 labels from

participant 2 were erroneously not collected). Correspondingly, the Highest

Average Rank labels make clear this common thread, with function and

component labels that tie the expert labels together, like “drive” and “mecha-

nism” and “shaft.” The Highest Cosine Similarity labels again contain words

that point more toward the specific patents in the cluster, like “toy.”

In general, as exhibited by the detailed node analysis and as can be observed in

Figures 2 and 3, the Highest Average Rank method tends to yield labels that

aremore general, indicating the common functionality or components explaining

the association of the patents within the cluster. In many cases, however, and

particularly with nodes that have only one patent in them, the two methods of

cluster label generation yield the same results. The Highest Cosine Similarity

method, on the other hand, tends to yield labels that are very specific to the con-

tent of the individual patents within the cluster, although sometimes containing

words that may only pertain to one or two patents in the cluster. It should be

noted that the patent text was not part-of-speech tagged for patents 16, 18, 27,

and 32, as these were hand picked patents from the previous design by analogy

study presented in Chan et al. (2011), which may be a reason for the less descrip-

tive label output from the Highest Average Rank labeling method for Node 1.

4.5 Explaining inter-expert and expert-algorithm differences

4.5.1 Similarities in patent function labels
Why did expert structures not completely agree with one another? Did they

agree what the categories of clusters should be but made somewhat different

decisions about which patents below inside each cluster? An analysis of the

overlap among experts between function labels given to each patent can pro-

vide some insights. Because of synonyms and near synonym relationships

among words, experteexpert similarity between labels should be determined

along a semantic overlap dimension rather than exact match dimension. The

cosines between words in the LSA vector word representation used by the

computational algorithm can serve as an approximation of semantic overlap

between words (Landaurer & Dumais, 1997).

Figure 7 plots the mean cosines across patents for three comparisons: (1) be-

tween experts’ function labels for each patent (1st column), (2) between
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Figure 7 Mean semantic

cosine similarity of expert

functional patent labels

compared to other experts,

patent abstracts, and patent

full text.

Expert representation of
experts’ function labels and abstracts for each patent (2nd column), and (3) be-

tween experts’ labels and full-text for each patent. The mean cosine between

abstract and full-text across patents is used as a baseline measure against

which to compare the mean cosines. This choice of baseline reflects our

assumption that, in situations where a patent is transformed into a different,

potentially sparser representation (e.g., moving between different experts’ rep-

resentations of a patent, summarizing patent in an abstract), the transforma-

tion from patent full-text to abstract would be a sensible “gold standard” with

respect to degree of similarity between transformations, to the extent that pat-

ent writers attempt to create a reasonably comprehensive and accurate sum-

mary of the patent in the abstract.
The first comparison column (vs. other) gives the mean cosine of each expert

against the other experts, averaged across experts for each patent, and then

averaged across patents. If the experts in general were attending to similar as-

pects of each patent, one would expect their mean cosine with each other for

each patent to at least approximate the mean cosine between the abstract and

full-text for that patent. The figure clearly shows that this is manifestly not the

case: on the contrary, the cosine values clearly indicate that the average simi-

larity between experts is dramatically lower than the average abstractefull-

text similarity.
The second comparison column (vs. abstract) gives the mean cosine of each

expert’s functional representation of each patent with the patent’s abstract,

averaged across patents. The figure clearly shows a range of similarities with

the abstract, suggesting divergent approaches to representing each patent,

perhaps with some experts attending to functional aspects of each patent in

a more holistic, high-level manner (E1 and E2), and others attending to
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much more focused, detailed aspects of each patent (E3 and E4). The third

comparison column yields a similar insight.

Overall, the authors interpret these data to suggest that the divergence between

experts in the overall structures stems at least in part from their attending to

different aspects of each patent. In support of this interpretation, the inter-

expert cosine for each patent was significantly positively correlated with

both average expert vs. abstract (r ¼ 0.49, p< 0.01) and expert vs. full-text co-

sines (r ¼ 0.35, p < 0.05), suggesting that the degree to which, on average, the

experts were attending to the patents in a holistic manner (i.e., in accord with

the full-text or abstract-level summary of the patent, rather than focusing on

specific aspects of the patent apart from its core functionality) was a key deter-

minant of the average similarity between experts. Considering the average

complexity of patents, this behavior of the experts is not unexpected.

4.5.2 Protocol video and audio interview analysis
It is clear not only from qualitative analysis of the structures, but also from the

correlations shown in Table 1, that the structures created by the experts are

diverse. The video and audio explanation of the structures both during the cre-

ation and during the “walk through” shed light on the reasons for this vari-

ability. Some representative quotes from the interviews with the experts at

different stages in the experiment are listed as follows. The common thread

among these expert quotes is that they all offer some indication that the

framing of the space prior to working with the patents, or contextualizing

the space with the design problem itself, leads to the experts building the space,

categorizing the patents, and attending to the content within the patents in

different and highly influenced ways. The quotes have been edited to remove

speech disfluencies.

“Well I guess in general I thought about people, people moving around, and

people moving things around and those are things that, those are activities

that, that happen, particularly, in the third world there’s a lot of mechanic-

, use of the body for labor. So, so when I thought about that, I thought about

well how do you attach things to the body, and I thought about that. Let’s

see. And then also how do you attach things, how do you attach a cart,

or connect a cart, and so you might be carrying water or something. And

you might as well carry it on a cart, and it has wheels on it, and maybe those

wheels spin, and there’s a small amount of generation of electricity from that,

that rotation of the wheels. And then, you’re pushing a cart or you’re pulling

a cart. So these are all related to the collecting power from a cart” (E3, while

explaining structure)

“It depends what path you were going down. If you said I’m doing something

mechanical and you’re describing the escapement mechanism, then that’s

fine. But otherwise I’m not sure. Again, I would go more with bicycle and
Design Studies Vol 34 No. 6 November 2013
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gears or bicycle and rotary motion.” (E2, while evaluating node distances in

algorithm output structure)

In addition, there was evidence that the experts experienced significant cogni-

tive load when performing the task, indicating that the automated generation

of structures would be beneficial in terms of removing the expense of energy

and time from the designer during patent exploration and organization. Some

representative quotes are below.

“Some of it, I think, some of it is wherever your starting filter is, how you’re

going to sort these things, and what my groupings are. You’ve already, once

you start to choose those, you’ve headed down a path, so if you forced a, had

some kind of forced starting grouping methodology or some kind of grouping

filter” (E1, while evaluating clustering in algorithm output structure)

“If I could see all the groups, maybe I’d put it in a different, different kind of

sort.” (E4, while evaluating node distances in algorithm output structure)
5 General discussion
The research questions underlying this work were the following:

1. How is the algorithm’s patent structure similar to or different from how

an expert designer might structure a space of patents in preparation to be

explored for inspiration through design by analogy with regard to a spe-

cific design problem?

2. If the structure is different, can experts nevertheless make sense of it and

perhaps see new connections between patents?

Our central finding was that the algorithm output structure of patents was a

good representation of the consensus of experts (to the extent that such

consensus exists) regarding the associations and clustering of patents in the

space. Specifically, the pairwise links generated by the algorithm correlate

significantly with all experts’ links, even with E4, whose links did not correlate

with the other experts, thereby capturing a diversity of expertise, which is

important in the increasingly diverse and interdisciplinary nature of engineer-

ing design (Reich & Shai, 2012). Additionally, our logistic regression analysis

demonstrated that the algorithm was able to probabilistically track the degree

of expert consensus on patent pairwise links, pairing patents experts agreed

should be paired, not pairing patents experts agreed should not be paired,

and assigning links with nonzero probabilities as a function of degree of expert

agreement in areas of potential disagreement.
From the verbal accounts given by the experts, both during their working with

the patents to create their own patent space, and during the interview
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regarding the algorithm-generated structure, some additional key findings

emerged. First, the general consensus with regard to the algorithm output

structure clustering is that it makes sense, and in some cases, was both sensible

and surprising e indicating that the output from the algorithm is intuitive to

expert designers, and can potentially even help them conceptualize the space in

new and useful ways, indicated by some interview data. Second, the node dis-

tances with respect to the design problem and the interrelationships between

the clusters examined were found to make sense to the experts. The explor-

atory quantitative comparison of distance orderings in Section 4.3 converges

with this finding, showing a significant correlation between the node distances

created by E2 and the node distances generated by the algorithm. This strong

overlap is of particular interest, as it indicates that the organization of the

overall space itself can be meaningful, not just the clustering of patentsemoti-

vating the use of structures for exploring patents as opposed to simple catego-

rization or grouping methods.

Thus, the answer to the research questions posed is that the algorithm did pro-

duce similar and different patent spaces when compared to expert thinking, but

in beneficial ways for both outcomes. The algorithm-generated patent space

was similar to expert thinking in that it was strongly correlated with their com-

mon ground, and found by the experts to be logical and sensible in clustering,

node distances, and node labels. The algorithm-generated patent space was

different from expert thinking in that the clustering of patents by functional

similarity was not highly correlated with any individual expert, and found to

be surprising at times (based on interview data), while still being sensible to

the experts. Most importantly, though, the experts did find the results

meaningful.

Returning to the potential outcomes outlined in Figure 1, we interpret the re-

sults of this work to be a combination of outcome 1, the algorithm does what an

expert would be able to do (in this particular case, while further studies using

larger expert pools are needed), but more efficiently, and outcome 2, the algo-

rithm may structure the analogical stimuli in a way that potentially allows for

novel connections to be made between patents. The algorithm-generated patent

space was similar to the consensus of the experts’ understanding and represen-

tation of the patent space, making it much more efficient than experts in

creating a meaningful patent space. However, the algorithm-generated patent

space was also meaningfully different from each individual expert’s represen-

tation of the patent space, and found at times to be surprising to individual

experts while still being sensible. This suggests that designers who traverse

the algorithm’s structures may be able to discover novel connections between

patents.

From a practical standpoint, the algorithm output structure offers a more

objective conceptualization of the space, while saving the designer time
Design Studies Vol 34 No. 6 November 2013
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and energy. The experts reported that the task of organizing the patents into

the space was one in which it was difficult not to get locked into a represen-

tation early on, and keeping track of all of the information and aspects was

challenging. This indicates that the automated patent structuring achieved

by the methodology presented in Fu et al. (2013) could provide significant

advantages to designers by presenting them with useful, sensible, and even

sometimes surprising representations of patent spaces while saving them sig-

nificant mental effort and time. It took the algorithm less than 45 min to

optimally generate 8 different structures, running on a Windows 64-bit

dual core desktop computer, while it took the experts approximately

1.25 h to generate one representation of the patent space. As the number

of patents grows, the time for the human would increase likely in a non-

linear way due to fundamental limitations with human memory (Cowan,

2000). Perhaps more importantly, it is unlikely that a designer would take

the time to structure large numbers of patents by hand, even though this

work has shown it potentially valuable. The algorithmic structuring of pat-

ents could be viewed as operating like another expert, providing a view

that overlaps with that of other experts, while being somewhat different

as well.

6 Conclusion
From an inspirational standpoint, the algorithm output structure offers a

conceptualization of the space that is sensible to four expert designers, while

still maintaining an element of surprise and unexpected representation of the

space, making it a promising basis for a computational design by analogy

inspiration tool. By allowing for more efficient and insightful access to

external analogical stimuli, designers have the potential to create more inno-

vative design solutions. With a way to extract the interrelatedness and inter-

connectedness of patents in the space, designers might be able to strategically

choose which cross-domain designs to expose themselves to, or even traverse

the space in a more intentional and meaningful exploratory way. Addition-

ally, by making novel connections between patents, designers might be

able to discover novel solutions via altered representations of the problem

or design space. Explicit tests of such effects should be explored in future

work.
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Appendix A

45 Patents used in algorithm generated structure

Study index
number

US patent
number

Patent title

1 6,082,923 Converging Sphere Joint Assemblyb

2 5,984,148 Self-Cleaning Pressure Relief and Bypass Valve, Dispensing Apparatus and
Method

3 5,375,948 Cutting Insert for Cutting and Grooving Tools
4 6,367,521 Gravity Feed Fluid Dispensing Valve
5 6,497,607 Interactive Toy
6 4,853,977 Patient Garment
7 5,993,410 Adjustable Probe
8 4,223,996 Apparatus for Mixing Solid and Liquid Constituents of Mortar or The Like
9 4,589,668 Wheeled Cart with Removable Skis
10 3,962,735 Movable Bulkhead with Guiding and Overcanting Prevention Means
11 4,124,051 Shock Absorbing Wheel Hub
12 4,984,583 Air Bubbling Mats for Therapeutically Agitating Bath Water
13 7,175,212 Latch Having Releasable Cinching Mechanism
14 4,259,034 Bale Handling Apparatus
15 6,634,325 Fuel Injection System for Linear Engines
16 4,139,981 Escapement mechanism for pendulum clocksa

17 5,909,815 Single Drive, Multi-Screw Sorter with Pusher Means
18 4,402,483 Earthquake isolation floora

19 4,103,708 Ventilated Poppet Damper
20 3,964,473 Bone Prosthesis
21 4,705,064 Safety Seal for an Operating Lever
22 6,142,689 Envelope Leveler for Printer Feeder
23 5,273,173 Screw Top
24 5,438,724 Method for Using Plastic Fasteners for Shoe-Lasting Applications
25 5,234,096 Hanger Tilt Mechanism For Hanging Transportation Apparatusb

26 4,867,134 Fluid-Heating Solar Collector
27 4,568,937 Induction loop vehicle detectora

28 6,109,282 Self-Erecting Loop Structure
29 4,303,397 Smoke Generating Apparatus
30 5,899,571 Beach Towel, Tote Bag and Beach Umbrella System
31 6,234,452 Hand Operable Motorcycle Stand
32 4,335,611 Accelerometera

33 5,085,240 Shelter Structureb

34 6,634,044 Compact Stretcher
35 4,270,310 Support Device for an Upstanding Plant Support Rod in a Plant Pot
36 5,423,097 Emergency Drop Fowler and Gatch
37 5,277,276 Compensating rope sheave tie downb

38 3,938,909 Single Needle Alternating Flow Blood Pump System
39 5,647,066 Safety Helmet Visor
40 6,119,041 Apparatus and Method for Linear Lesion Ablation
41 4,484,762 Ski Binding and Boot
42 4,762,262 Side-Fed Stapler
43 6,164,698 Steering Device for Automobiles
44 6,062,856 Dental Implant Hole Guide Extension
45 4,739,727 Animal Waterer

a Far Analogical Stimuli from Chan et al. (2011).
b Far Analogical Stimuli from Fu et al. (2012).
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